Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,11 +30,6 @@ try:
|
|
| 30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
logger.info(f"Using device: {device}")
|
| 32 |
|
| 33 |
-
# Configure PyTorch settings
|
| 34 |
-
if device == "cuda":
|
| 35 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 36 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 37 |
-
|
| 38 |
# Load tokenizer
|
| 39 |
logger.info("Loading tokenizer...")
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
@@ -45,16 +40,15 @@ try:
|
|
| 45 |
tokenizer.pad_token = tokenizer.eos_token
|
| 46 |
logger.info("Tokenizer loaded successfully")
|
| 47 |
|
| 48 |
-
# Load model with
|
|
|
|
| 49 |
logger.info("Loading model...")
|
| 50 |
model = AutoModelForCausalLM.from_pretrained(
|
| 51 |
model_name,
|
| 52 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 53 |
trust_remote_code=True,
|
| 54 |
token=hf_token,
|
| 55 |
-
device_map="auto"
|
| 56 |
-
max_memory={0: "12GiB"} if device == "cuda" else None,
|
| 57 |
-
load_in_8bit=True if device == "cuda" else False
|
| 58 |
)
|
| 59 |
logger.info("Model loaded successfully")
|
| 60 |
|
|
@@ -64,12 +58,11 @@ try:
|
|
| 64 |
"text-generation",
|
| 65 |
model=model,
|
| 66 |
tokenizer=tokenizer,
|
| 67 |
-
max_new_tokens=512,
|
| 68 |
do_sample=True,
|
| 69 |
-
temperature=0.8,
|
| 70 |
-
top_p=0.95,
|
| 71 |
-
|
| 72 |
-
repetition_penalty=1.2, # Increased to reduce repetition
|
| 73 |
device_map="auto"
|
| 74 |
)
|
| 75 |
logger.info("Pipeline created successfully")
|
|
@@ -78,15 +71,13 @@ except Exception as e:
|
|
| 78 |
logger.error(f"Error during initialization: {str(e)}")
|
| 79 |
raise
|
| 80 |
|
| 81 |
-
# Improved system message
|
| 82 |
system_message = """You are AQuaBot, an AI assistant focused on providing accurate and environmentally conscious information. Your responses should be:
|
| 83 |
1. Clear and concise yet informative
|
| 84 |
2. Based on verified information when discussing economic and financial topics
|
| 85 |
3. Balanced and well-reasoned
|
| 86 |
4. Mindful of environmental impact
|
| 87 |
-
5. Professional but conversational in tone
|
| 88 |
-
|
| 89 |
-
Maintain a helpful and knowledgeable demeanor while avoiding speculation. If you're unsure about something, acknowledge it openly."""
|
| 90 |
|
| 91 |
@spaces.GPU(duration=60)
|
| 92 |
@torch.inference_mode()
|
|
@@ -99,7 +90,7 @@ def generate_response(user_input, chat_history):
|
|
| 99 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
| 100 |
total_water_consumption += input_water_consumption
|
| 101 |
|
| 102 |
-
# Create a clean conversation history
|
| 103 |
conversation_history = ""
|
| 104 |
if chat_history:
|
| 105 |
for user_msg, assistant_msg in chat_history:
|
|
@@ -117,13 +108,9 @@ def generate_response(user_input, chat_history):
|
|
| 117 |
)
|
| 118 |
logger.info("Model response generated successfully")
|
| 119 |
|
| 120 |
-
# Clean up response
|
| 121 |
assistant_response = outputs[0]['generated_text'].strip()
|
| 122 |
assistant_response = assistant_response.split('User:')[0].split('Assistant:')[-1].strip()
|
| 123 |
-
|
| 124 |
-
# Add fact-check disclaimer for economic/financial responses
|
| 125 |
-
if any(keyword in user_input.lower() for keyword in ['invest', 'money', 'salary', 'cost', 'wage', 'economy']):
|
| 126 |
-
assistant_response += "\n\nNote: Financial information provided should be verified with current market data and professional advisors."
|
| 127 |
|
| 128 |
# Calculate water consumption for output
|
| 129 |
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
|
@@ -132,7 +119,7 @@ def generate_response(user_input, chat_history):
|
|
| 132 |
# Update chat history
|
| 133 |
chat_history.append([user_input, assistant_response])
|
| 134 |
|
| 135 |
-
#
|
| 136 |
water_message = f"""
|
| 137 |
<div style="position: fixed; top: 20px; right: 20px;
|
| 138 |
background-color: white; padding: 15px;
|
|
@@ -155,6 +142,7 @@ def generate_response(user_input, chat_history):
|
|
| 155 |
chat_history.append([user_input, error_message])
|
| 156 |
return chat_history, show_water
|
| 157 |
|
|
|
|
| 158 |
# Constants for water consumption calculation
|
| 159 |
WATER_PER_TOKEN = {
|
| 160 |
"input_training": 0.0000309,
|
|
|
|
| 30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
logger.info(f"Using device: {device}")
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# Load tokenizer
|
| 34 |
logger.info("Loading tokenizer...")
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
| 40 |
tokenizer.pad_token = tokenizer.eos_token
|
| 41 |
logger.info("Tokenizer loaded successfully")
|
| 42 |
|
| 43 |
+
# Load model with basic configuration
|
| 44 |
+
# Accelerate helps with automatic device mapping for large models
|
| 45 |
logger.info("Loading model...")
|
| 46 |
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
model_name,
|
| 48 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 49 |
trust_remote_code=True,
|
| 50 |
token=hf_token,
|
| 51 |
+
device_map="auto" # Accelerate maneja autom谩ticamente la distribuci贸n del modelo
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
logger.info("Model loaded successfully")
|
| 54 |
|
|
|
|
| 58 |
"text-generation",
|
| 59 |
model=model,
|
| 60 |
tokenizer=tokenizer,
|
| 61 |
+
max_new_tokens=512,
|
| 62 |
do_sample=True,
|
| 63 |
+
temperature=0.8,
|
| 64 |
+
top_p=0.95,
|
| 65 |
+
repetition_penalty=1.2,
|
|
|
|
| 66 |
device_map="auto"
|
| 67 |
)
|
| 68 |
logger.info("Pipeline created successfully")
|
|
|
|
| 71 |
logger.error(f"Error during initialization: {str(e)}")
|
| 72 |
raise
|
| 73 |
|
| 74 |
+
# Improved system message
|
| 75 |
system_message = """You are AQuaBot, an AI assistant focused on providing accurate and environmentally conscious information. Your responses should be:
|
| 76 |
1. Clear and concise yet informative
|
| 77 |
2. Based on verified information when discussing economic and financial topics
|
| 78 |
3. Balanced and well-reasoned
|
| 79 |
4. Mindful of environmental impact
|
| 80 |
+
5. Professional but conversational in tone"""
|
|
|
|
|
|
|
| 81 |
|
| 82 |
@spaces.GPU(duration=60)
|
| 83 |
@torch.inference_mode()
|
|
|
|
| 90 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
| 91 |
total_water_consumption += input_water_consumption
|
| 92 |
|
| 93 |
+
# Create a clean conversation history
|
| 94 |
conversation_history = ""
|
| 95 |
if chat_history:
|
| 96 |
for user_msg, assistant_msg in chat_history:
|
|
|
|
| 108 |
)
|
| 109 |
logger.info("Model response generated successfully")
|
| 110 |
|
| 111 |
+
# Clean up response
|
| 112 |
assistant_response = outputs[0]['generated_text'].strip()
|
| 113 |
assistant_response = assistant_response.split('User:')[0].split('Assistant:')[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# Calculate water consumption for output
|
| 116 |
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
|
|
|
| 119 |
# Update chat history
|
| 120 |
chat_history.append([user_input, assistant_response])
|
| 121 |
|
| 122 |
+
# Water consumption message
|
| 123 |
water_message = f"""
|
| 124 |
<div style="position: fixed; top: 20px; right: 20px;
|
| 125 |
background-color: white; padding: 15px;
|
|
|
|
| 142 |
chat_history.append([user_input, error_message])
|
| 143 |
return chat_history, show_water
|
| 144 |
|
| 145 |
+
|
| 146 |
# Constants for water consumption calculation
|
| 147 |
WATER_PER_TOKEN = {
|
| 148 |
"input_training": 0.0000309,
|