update titles
Browse files
app.py
CHANGED
|
@@ -21,16 +21,16 @@ def load_examples():
|
|
| 21 |
examples = json.load(f)
|
| 22 |
return examples
|
| 23 |
|
| 24 |
-
st.set_page_config(page_icon=
|
| 25 |
|
| 26 |
|
| 27 |
st.sidebar.header("Models")
|
| 28 |
models = ["CodeParrot", "InCoder"]
|
| 29 |
-
selected_models = st.sidebar.multiselect(
|
| 30 |
|
| 31 |
st.sidebar.header("Tasks")
|
| 32 |
tasks = [" ", "Pretraining datasets", "Model architecture", "Model evaluation", "Code generation"]
|
| 33 |
-
selected_task = st.sidebar.selectbox("Select a task
|
| 34 |
|
| 35 |
|
| 36 |
if selected_task == " ":
|
|
@@ -47,7 +47,7 @@ elif selected_task == "Pretraining datasets":
|
|
| 47 |
for model in selected_models:
|
| 48 |
with open(f"datasets/{model.lower()}.txt", "r") as f:
|
| 49 |
text = f.read()
|
| 50 |
-
st.markdown(f"### {model}
|
| 51 |
st.markdown(text)
|
| 52 |
|
| 53 |
elif selected_task == "Model architecture":
|
|
@@ -55,7 +55,7 @@ elif selected_task == "Model architecture":
|
|
| 55 |
for model in selected_models:
|
| 56 |
with open(f"architectures/{model.lower()}.txt", "r") as f:
|
| 57 |
text = f.read()
|
| 58 |
-
st.markdown(f"## {model}
|
| 59 |
st.markdown(text)
|
| 60 |
|
| 61 |
elif selected_task == "Model evaluation":
|
|
@@ -70,7 +70,7 @@ elif selected_task == "Code generation":
|
|
| 70 |
examples = load_examples()
|
| 71 |
example_names = [example["name"] for example in examples]
|
| 72 |
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 73 |
-
selected_example = st.sidebar.selectbox("Select one of the following examples
|
| 74 |
example_text = examples[name2id[selected_example]]["value"]
|
| 75 |
default_length = examples[name2id[selected_example]]["length"]
|
| 76 |
st.sidebar.header("Generation settings")
|
|
@@ -84,5 +84,5 @@ elif selected_task == "Code generation":
|
|
| 84 |
url = f'https://hf.space/embed/loubnabnl/{model.lower()}-subspace/+/api/predict/'
|
| 85 |
r = requests.post(url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]})
|
| 86 |
generated_text = r.json()['data'][0]
|
| 87 |
-
st.markdown(f"{model}
|
| 88 |
st.code(generated_text)
|
|
|
|
| 21 |
examples = json.load(f)
|
| 22 |
return examples
|
| 23 |
|
| 24 |
+
st.set_page_config(page_icon=":laptop:", layout="wide")
|
| 25 |
|
| 26 |
|
| 27 |
st.sidebar.header("Models")
|
| 28 |
models = ["CodeParrot", "InCoder"]
|
| 29 |
+
selected_models = st.sidebar.multiselect("Select code generation models to compare", models, default=["CodeParrot"])
|
| 30 |
|
| 31 |
st.sidebar.header("Tasks")
|
| 32 |
tasks = [" ", "Pretraining datasets", "Model architecture", "Model evaluation", "Code generation"]
|
| 33 |
+
selected_task = st.sidebar.selectbox("Select a task", tasks)
|
| 34 |
|
| 35 |
|
| 36 |
if selected_task == " ":
|
|
|
|
| 47 |
for model in selected_models:
|
| 48 |
with open(f"datasets/{model.lower()}.txt", "r") as f:
|
| 49 |
text = f.read()
|
| 50 |
+
st.markdown(f"### {model}")
|
| 51 |
st.markdown(text)
|
| 52 |
|
| 53 |
elif selected_task == "Model architecture":
|
|
|
|
| 55 |
for model in selected_models:
|
| 56 |
with open(f"architectures/{model.lower()}.txt", "r") as f:
|
| 57 |
text = f.read()
|
| 58 |
+
st.markdown(f"## {model}")
|
| 59 |
st.markdown(text)
|
| 60 |
|
| 61 |
elif selected_task == "Model evaluation":
|
|
|
|
| 70 |
examples = load_examples()
|
| 71 |
example_names = [example["name"] for example in examples]
|
| 72 |
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 73 |
+
selected_example = st.sidebar.selectbox("Select one of the following examples", example_names)
|
| 74 |
example_text = examples[name2id[selected_example]]["value"]
|
| 75 |
default_length = examples[name2id[selected_example]]["length"]
|
| 76 |
st.sidebar.header("Generation settings")
|
|
|
|
| 84 |
url = f'https://hf.space/embed/loubnabnl/{model.lower()}-subspace/+/api/predict/'
|
| 85 |
r = requests.post(url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]})
|
| 86 |
generated_text = r.json()['data'][0]
|
| 87 |
+
st.markdown(f"{model}")
|
| 88 |
st.code(generated_text)
|