update
Browse files
app.py
CHANGED
|
@@ -39,13 +39,12 @@ with open("utils/intro.txt", "r") as f:
|
|
| 39 |
st.markdown(intro)
|
| 40 |
|
| 41 |
# Pretraining datasets
|
| 42 |
-
st.
|
| 43 |
st.markdown(
|
| 44 |
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
|
| 45 |
)
|
| 46 |
df = pd.read_csv("utils/data_preview.csv")
|
| 47 |
st.dataframe(df)
|
| 48 |
-
st.subheader("Model")
|
| 49 |
col1, col2= st.columns([1,2])
|
| 50 |
with col1:
|
| 51 |
selected_model = st.selectbox(
|
|
@@ -56,9 +55,8 @@ with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
|
|
| 56 |
st.markdown(text)
|
| 57 |
|
| 58 |
# Model architecture
|
| 59 |
-
st.
|
| 60 |
st.markdown("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
|
| 61 |
-
st.subheader("Model")
|
| 62 |
col1, col2= st.columns([1,2])
|
| 63 |
with col1:
|
| 64 |
selected_model = st.selectbox(
|
|
@@ -71,13 +69,13 @@ if selected_model == "InCoder":
|
|
| 71 |
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
|
| 72 |
|
| 73 |
# Model evaluation
|
| 74 |
-
st.
|
| 75 |
with open("evaluation/intro.txt", "r") as f:
|
| 76 |
intro = f.read()
|
| 77 |
st.markdown(intro)
|
| 78 |
|
| 79 |
# Code generation
|
| 80 |
-
st.
|
| 81 |
col1, col2, col3 = st.columns([5,1,5])
|
| 82 |
with col1:
|
| 83 |
st.markdown("**Models**")
|
|
|
|
| 39 |
st.markdown(intro)
|
| 40 |
|
| 41 |
# Pretraining datasets
|
| 42 |
+
st.subheader("1 - Pretraining datasets 📚")
|
| 43 |
st.markdown(
|
| 44 |
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
|
| 45 |
)
|
| 46 |
df = pd.read_csv("utils/data_preview.csv")
|
| 47 |
st.dataframe(df)
|
|
|
|
| 48 |
col1, col2= st.columns([1,2])
|
| 49 |
with col1:
|
| 50 |
selected_model = st.selectbox(
|
|
|
|
| 55 |
st.markdown(text)
|
| 56 |
|
| 57 |
# Model architecture
|
| 58 |
+
st.subheader("2 - Model architecture")
|
| 59 |
st.markdown("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
|
|
|
|
| 60 |
col1, col2= st.columns([1,2])
|
| 61 |
with col1:
|
| 62 |
selected_model = st.selectbox(
|
|
|
|
| 69 |
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
|
| 70 |
|
| 71 |
# Model evaluation
|
| 72 |
+
st.subheader("3 - Code models evaluation 📊")
|
| 73 |
with open("evaluation/intro.txt", "r") as f:
|
| 74 |
intro = f.read()
|
| 75 |
st.markdown(intro)
|
| 76 |
|
| 77 |
# Code generation
|
| 78 |
+
st.subheader("4 - Code generation ✨")
|
| 79 |
col1, col2, col3 = st.columns([5,1,5])
|
| 80 |
with col1:
|
| 81 |
st.markdown("**Models**")
|