Delete app_threading.py
Browse files- app_threading.py +0 -205
app_threading.py
DELETED
|
@@ -1,205 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import requests
|
| 5 |
-
from multiprocessing import Pool
|
| 6 |
-
from functools import partial
|
| 7 |
-
import streamlit as st
|
| 8 |
-
from datasets import load_dataset, load_metric
|
| 9 |
-
|
| 10 |
-
MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"]
|
| 11 |
-
GENERATION_MODELS = ["CodeParrot", "InCoder", "CodeGen"]
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
@st.cache()
|
| 15 |
-
def load_examples():
|
| 16 |
-
with open("utils/examples.json", "r") as f:
|
| 17 |
-
examples = json.load(f)
|
| 18 |
-
return examples
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def load_evaluation():
|
| 22 |
-
# load task 2 of HumanEval and code_eval_metric
|
| 23 |
-
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
|
| 24 |
-
human_eval = load_dataset("openai_humaneval")
|
| 25 |
-
entry_point = f"check({human_eval['test'][2]['entry_point']})"
|
| 26 |
-
test_func = "\n" + human_eval["test"][2]["test"] + "\n" + entry_point
|
| 27 |
-
code_eval = load_metric("code_eval")
|
| 28 |
-
return code_eval, test_func
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def read_markdown(path):
|
| 32 |
-
with open(path, "r") as f:
|
| 33 |
-
output = f.read()
|
| 34 |
-
st.markdown(output, unsafe_allow_html=True)
|
| 35 |
-
|
| 36 |
-
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
|
| 37 |
-
url = (
|
| 38 |
-
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
|
| 39 |
-
)
|
| 40 |
-
r = requests.post(
|
| 41 |
-
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
|
| 42 |
-
)
|
| 43 |
-
generated_text = r.json()["data"][0]
|
| 44 |
-
return generated_text
|
| 45 |
-
|
| 46 |
-
def generate_code_threads(
|
| 47 |
-
generations, models, gen_prompt, max_new_tokens, temperature, seed
|
| 48 |
-
):
|
| 49 |
-
threads = []
|
| 50 |
-
for model_name in models:
|
| 51 |
-
# create the thread
|
| 52 |
-
threads.append(
|
| 53 |
-
threading.Thread(
|
| 54 |
-
target=generate_code,
|
| 55 |
-
args=(
|
| 56 |
-
generations,
|
| 57 |
-
model_name,
|
| 58 |
-
gen_prompt,
|
| 59 |
-
max_new_tokens,
|
| 60 |
-
temperature,
|
| 61 |
-
seed,
|
| 62 |
-
),
|
| 63 |
-
)
|
| 64 |
-
)
|
| 65 |
-
threads[-1].start()
|
| 66 |
-
|
| 67 |
-
for t in threads:
|
| 68 |
-
t.join()
|
| 69 |
-
|
| 70 |
-
@st.cache(show_spinner=False)
|
| 71 |
-
def generate_teaser(gen_prompt):
|
| 72 |
-
generations = []
|
| 73 |
-
generate_code(generations, "CodeGen", gen_prompt, 10, 0.2, 42)
|
| 74 |
-
return generations[0]
|
| 75 |
-
|
| 76 |
-
st.set_page_config(page_icon=":laptop:", layout="wide")
|
| 77 |
-
with open("utils/table_contents.md", "r") as f:
|
| 78 |
-
contents = f.read()
|
| 79 |
-
|
| 80 |
-
st.sidebar.markdown(contents)
|
| 81 |
-
|
| 82 |
-
# Introduction
|
| 83 |
-
st.title("Code generation with 🤗")
|
| 84 |
-
read_markdown("utils/summary.md")
|
| 85 |
-
## teaser
|
| 86 |
-
example_text = "def print_hello_world():"
|
| 87 |
-
col1, col2, col3 = st.columns([1, 2, 1])
|
| 88 |
-
with col2:
|
| 89 |
-
gen_prompt = st.text_area(
|
| 90 |
-
"",
|
| 91 |
-
value=example_text,
|
| 92 |
-
height=100,
|
| 93 |
-
).strip()
|
| 94 |
-
if st.button("Generate code!", key=1):
|
| 95 |
-
with st.spinner("Generating code..."):
|
| 96 |
-
st.code(generate_teaser(gen_prompt))
|
| 97 |
-
read_markdown("utils/intro.md")
|
| 98 |
-
|
| 99 |
-
# Code datasets
|
| 100 |
-
st.subheader("1 - Code datasets")
|
| 101 |
-
read_markdown("datasets/intro.md")
|
| 102 |
-
read_markdown("datasets/github_code.md")
|
| 103 |
-
col1, col2 = st.columns([1, 2])
|
| 104 |
-
with col1:
|
| 105 |
-
selected_model = st.selectbox("", MODELS, key=1)
|
| 106 |
-
read_markdown(f"datasets/{selected_model.lower()}.md")
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Model architecture
|
| 110 |
-
st.subheader("2 - Model architecture")
|
| 111 |
-
read_markdown("architectures/intro.md")
|
| 112 |
-
col1, col2 = st.columns([1, 2])
|
| 113 |
-
with col1:
|
| 114 |
-
selected_model = st.selectbox("", MODELS, key=2)
|
| 115 |
-
read_markdown(f"architectures/{selected_model.lower()}.md")
|
| 116 |
-
|
| 117 |
-
# Model evaluation
|
| 118 |
-
st.subheader("3 - Code model evaluation")
|
| 119 |
-
read_markdown("evaluation/intro.md")
|
| 120 |
-
read_markdown("evaluation/demo_humaneval.md")
|
| 121 |
-
## quiz
|
| 122 |
-
st.markdown("Below you can try solving this problem or visualize the solution of CodeParrot:")
|
| 123 |
-
with open("evaluation/problem.md", "r") as f:
|
| 124 |
-
problem = f.read()
|
| 125 |
-
with open("evaluation/solution.md", "r") as f:
|
| 126 |
-
solution = f.read()
|
| 127 |
-
|
| 128 |
-
candidate_solution = st.text_area(
|
| 129 |
-
"Complete the problem:",
|
| 130 |
-
value=problem,
|
| 131 |
-
height=240,
|
| 132 |
-
).strip()
|
| 133 |
-
if st.button("Test my solution", key=2):
|
| 134 |
-
with st.spinner("Testing..."):
|
| 135 |
-
code_eval, test_func = load_evaluation()
|
| 136 |
-
test_cases = [test_func]
|
| 137 |
-
candidates = [[candidate_solution]]
|
| 138 |
-
pass_at_k, _ = code_eval.compute(references=test_cases, predictions=candidates)
|
| 139 |
-
text = "Your solution didn't pass the test, pass@1 is 0 😕" if pass_at_k['pass@1'] < 1 else "Congrats your pass@1 is 1! 🎉"
|
| 140 |
-
st.markdown(text)
|
| 141 |
-
if st.button("Show model solution", key=3):
|
| 142 |
-
st.markdown(solution)
|
| 143 |
-
|
| 144 |
-
# Code generation
|
| 145 |
-
st.subheader("4 - Code generation ✨")
|
| 146 |
-
read_markdown("generation/intro.md")
|
| 147 |
-
col1, col2, col3 = st.columns([7, 1, 6])
|
| 148 |
-
with col1:
|
| 149 |
-
st.markdown("**Models**")
|
| 150 |
-
selected_models = st.multiselect(
|
| 151 |
-
"Select code generation models to compare:",
|
| 152 |
-
GENERATION_MODELS,
|
| 153 |
-
default=GENERATION_MODELS,
|
| 154 |
-
key=3,
|
| 155 |
-
)
|
| 156 |
-
st.markdown(" ")
|
| 157 |
-
st.markdown("**Examples**")
|
| 158 |
-
examples = load_examples()
|
| 159 |
-
example_names = [example["name"] for example in examples]
|
| 160 |
-
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 161 |
-
selected_example = st.selectbox(
|
| 162 |
-
"Select one of the following examples or implement yours:", example_names
|
| 163 |
-
)
|
| 164 |
-
example_text = examples[name2id[selected_example]]["value"]
|
| 165 |
-
default_length = examples[name2id[selected_example]]["length"]
|
| 166 |
-
with col3:
|
| 167 |
-
st.markdown("**Generation settings**")
|
| 168 |
-
temperature = st.slider(
|
| 169 |
-
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
|
| 170 |
-
)
|
| 171 |
-
max_new_tokens = st.slider(
|
| 172 |
-
"Number of tokens to generate:",
|
| 173 |
-
value=default_length,
|
| 174 |
-
min_value=8,
|
| 175 |
-
step=4,
|
| 176 |
-
max_value=256,
|
| 177 |
-
)
|
| 178 |
-
seed = st.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000)
|
| 179 |
-
gen_prompt = st.text_area(
|
| 180 |
-
"Generate code with prompt:",
|
| 181 |
-
value=example_text,
|
| 182 |
-
height=200,
|
| 183 |
-
).strip()
|
| 184 |
-
if st.button("Generate code!"):
|
| 185 |
-
with st.spinner("Generating code..."):
|
| 186 |
-
# Create a multiprocessing Pool
|
| 187 |
-
pool = Pool()
|
| 188 |
-
generate_parallel = partial(
|
| 189 |
-
generate_code,
|
| 190 |
-
|
| 191 |
-
gen_prompt=gen_prompt,
|
| 192 |
-
max_new_tokens=max_new_tokens,
|
| 193 |
-
temperature=temperature,
|
| 194 |
-
seed=seed,
|
| 195 |
-
)
|
| 196 |
-
output = pool.map(generate_parallel, selected_models)
|
| 197 |
-
for i in range(len(output)):
|
| 198 |
-
st.markdown(f"**{selected_models[i]}**")
|
| 199 |
-
st.code(output[i])
|
| 200 |
-
if len(output) < len(selected_models):
|
| 201 |
-
st.markdown("<span style='color:red'>Warning: Some models run into timeout, you can try generating code using the original subspaces: [InCoder](https://huggingface.co/spaces/loubnabnl/incoder-subspace), [CodeGen](https://huggingface.co/spaces/loubnabnl/codegen-subspace), [CodeParrot](https://huggingface.co/spaces/loubnabnl/codeparrot-subspace)</span>", unsafe_allow_html=True)
|
| 202 |
-
|
| 203 |
-
# Resources
|
| 204 |
-
st.subheader("Resources")
|
| 205 |
-
read_markdown("utils/resources.md")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|