remove unecessary file
Browse files
.ipynb_checkpoints/app-checkpoint.py
DELETED
|
@@ -1,109 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
| 3 |
-
from transformers import pipeline
|
| 4 |
-
import torch
|
| 5 |
-
import json
|
| 6 |
-
import pandas as pd
|
| 7 |
-
|
| 8 |
-
@st.cache(allow_output_mutation=True)
|
| 9 |
-
def load_tokenizer(model_ckpt):
|
| 10 |
-
return AutoTokenizer.from_pretrained(model_ckpt)
|
| 11 |
-
|
| 12 |
-
@st.cache(allow_output_mutation=True)
|
| 13 |
-
def load_model(model_ckpt):
|
| 14 |
-
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True)
|
| 15 |
-
return model
|
| 16 |
-
|
| 17 |
-
@st.cache()
|
| 18 |
-
def load_examples():
|
| 19 |
-
with open("examples.json", "r") as f:
|
| 20 |
-
examples = json.load(f)
|
| 21 |
-
return examples
|
| 22 |
-
|
| 23 |
-
st.set_page_config(page_icon=':laptop:', layout="wide")
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
st.sidebar.header("Models")
|
| 27 |
-
models = ["CodeParrot", "OPT", "InCoder"]
|
| 28 |
-
selected_models = st.sidebar.multiselect('Select code generation models to compare:',
|
| 29 |
-
models,
|
| 30 |
-
default=["CodeParrot"])
|
| 31 |
-
st.sidebar.header("Tasks")
|
| 32 |
-
tasks = [" ", "Model evaluation", "Pretraining datasets", "Model architecture", "Code generation"]
|
| 33 |
-
selected_task = st.sidebar.selectbox("Select a task:", tasks)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
tokenizer1 = load_tokenizer("lvwerra/codeparrot")
|
| 37 |
-
model1 = load_model("lvwerra/codeparrot")
|
| 38 |
-
tokenizer2 = load_tokenizer("facebook/incoder-1B")
|
| 39 |
-
model2 = load_model("facebook/incoder-1B")
|
| 40 |
-
#tokenizer3 = load_tokenizer("facebook/opt-1.3b")
|
| 41 |
-
#model3 = load_model("facebook/opt-1.3b")
|
| 42 |
-
pipelines = {}
|
| 43 |
-
for element in models:
|
| 44 |
-
if element == "CodeParrot":
|
| 45 |
-
pipelines[element] = pipeline("text-generation", model=model1, tokenizer=tokenizer1)
|
| 46 |
-
elif element == "InCoder":
|
| 47 |
-
tokenizer = load_tokenizer("facebook/incoder-1B")
|
| 48 |
-
model = load_model("facebook/incoder-1B")
|
| 49 |
-
pipelines[element] = pipeline("text-generation", model=model2, tokenizer=tokenizer2)
|
| 50 |
-
#else:
|
| 51 |
-
# tokenizer = load_tokenizer("facebook/opt-1.3b")
|
| 52 |
-
# model = load_model("facebook/opt-1.3b")
|
| 53 |
-
# pipelines[element] = pipeline("text-generation", model=model3, tokenizer=tokenizer3)
|
| 54 |
-
|
| 55 |
-
examples = load_examples()
|
| 56 |
-
example_names = [example["name"] for example in examples]
|
| 57 |
-
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 58 |
-
set_seed(42)
|
| 59 |
-
gen_kwargs = {}
|
| 60 |
-
|
| 61 |
-
if selected_task == " ":
|
| 62 |
-
st.title("Code Generation Models comparison")
|
| 63 |
-
with open("intro.txt", "r") as f:
|
| 64 |
-
intro = f.read()
|
| 65 |
-
st.markdown(intro)
|
| 66 |
-
elif selected_task == "Pretraining datasets":
|
| 67 |
-
st.title("Pretraining datasets 📚")
|
| 68 |
-
st.markdown("Preview of some code files from Github repositories")
|
| 69 |
-
df = pd.read_csv("preview-github-data.csv")
|
| 70 |
-
st.dataframe(df)
|
| 71 |
-
for model in selected_models:
|
| 72 |
-
with open(f"datasets/{model.lower()}.txt", "r") as f:
|
| 73 |
-
text = f.read()
|
| 74 |
-
st.markdown(f"### {model}:")
|
| 75 |
-
st.markdown(text)
|
| 76 |
-
elif selected_task == "Model architecture":
|
| 77 |
-
st.title("Model architecture 🔨")
|
| 78 |
-
for model in selected_models:
|
| 79 |
-
with open(f"architectures/{model.lower()}.txt", "r") as f:
|
| 80 |
-
text = f.read()
|
| 81 |
-
st.markdown(f"## {model}:")
|
| 82 |
-
st.markdown(text)
|
| 83 |
-
elif selected_task == "Model evaluation":
|
| 84 |
-
st.title("Code models evaluation 📊")
|
| 85 |
-
with open("evaluation/intro.txt", "r") as f:
|
| 86 |
-
intro = f.read()
|
| 87 |
-
st.markdown(intro)
|
| 88 |
-
elif selected_task == "Code generation":
|
| 89 |
-
st.title("Code generation 💻")
|
| 90 |
-
st.sidebar.header("Examples")
|
| 91 |
-
selected_example = st.sidebar.selectbox("Select one of the following examples:", example_names)
|
| 92 |
-
example_text = examples[name2id[selected_example]]["value"]
|
| 93 |
-
default_length = examples[name2id[selected_example]]["length"]
|
| 94 |
-
st.sidebar.header("Generation settings")
|
| 95 |
-
gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy:", ["Greedy", "Sample"]) == "Sample"
|
| 96 |
-
gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate:", value=default_length, min_value=8, step=8, max_value=256)
|
| 97 |
-
if gen_kwargs["do_sample"]:
|
| 98 |
-
gen_kwargs["temperature"] = 0.2
|
| 99 |
-
gen_kwargs["top_k"] = 0
|
| 100 |
-
gen_kwargs["top_p"] = 0.95
|
| 101 |
-
gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip()
|
| 102 |
-
if st.button("Generate code!"):
|
| 103 |
-
with st.spinner("Generating code..."):
|
| 104 |
-
for model in selected_models:
|
| 105 |
-
if model != "OPT":
|
| 106 |
-
pipe = pipelines[model]
|
| 107 |
-
generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text']
|
| 108 |
-
st.markdown(f"{model}:")
|
| 109 |
-
st.code(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|