Spaces:
Running
Running
| gpu_id=0 | |
| # Note: Since we have utilized half-precision (FP16) for training, the training process can occasionally be unstable. | |
| # It is recommended to run the training process multiple times and choose the best model based on performance | |
| # on the validation set as the final model. | |
| # pre-trained on MVtec and colondb | |
| CUDA_VISIBLE_DEVICES=$gpu_id python train.py --save_fig True --training_data mvtec colondb --testing_data visa | |
| # pre-trained on Visa and Clinicdb | |
| CUDA_VISIBLE_DEVICES=$gpu_id python train.py --save_fig True --training_data visa clinicdb --testing_data mvtec | |
| # This model is pre-trained on all available data to create a powerful Zero-Shot Anomaly Detection (ZSAD) model for demonstration purposes. | |
| CUDA_VISIBLE_DEVICES=$gpu_id python train.py --save_fig True \ | |
| --training_data \ | |
| br35h brain_mri btad clinicdb colondb \ | |
| dagm dtd headct isic mpdd mvtec sdd tn3k visa \ | |
| --testing_data mvtec | |