Commit
·
d97c34e
1
Parent(s):
7730ebf
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ sys.path.insert(0, 'gradio-modified')
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
-
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
import torch
|
|
@@ -27,7 +27,123 @@ print('Use device:', device)
|
|
| 27 |
|
| 28 |
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def resize_original(img: Image.Image):
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
+
import torch.nn as nn
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
import torch
|
|
|
|
| 27 |
|
| 28 |
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')
|
| 29 |
|
| 30 |
+
class BaseColor(nn.Module):
|
| 31 |
+
def __init__(self):
|
| 32 |
+
super(BaseColor, self).__init__()
|
| 33 |
+
|
| 34 |
+
self.l_cent = 50.
|
| 35 |
+
self.l_norm = 100.
|
| 36 |
+
self.ab_norm = 110.
|
| 37 |
+
|
| 38 |
+
def normalize_l(self, in_l):
|
| 39 |
+
return (in_l-self.l_cent)/self.l_norm
|
| 40 |
+
|
| 41 |
+
def unnormalize_l(self, in_l):
|
| 42 |
+
return in_l*self.l_norm + self.l_cent
|
| 43 |
+
|
| 44 |
+
def normalize_ab(self, in_ab):
|
| 45 |
+
return in_ab/self.ab_norm
|
| 46 |
+
|
| 47 |
+
def unnormalize_ab(self, in_ab):
|
| 48 |
+
return in_ab*self.ab_norm
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class ECCVGenerator(BaseColor):
|
| 53 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
| 54 |
+
super(ECCVGenerator, self).__init__()
|
| 55 |
+
|
| 56 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 57 |
+
model1+=[nn.ReLU(True),]
|
| 58 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
| 59 |
+
model1+=[nn.ReLU(True),]
|
| 60 |
+
model1+=[norm_layer(64),]
|
| 61 |
+
|
| 62 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 63 |
+
model2+=[nn.ReLU(True),]
|
| 64 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
| 65 |
+
model2+=[nn.ReLU(True),]
|
| 66 |
+
model2+=[norm_layer(128),]
|
| 67 |
+
|
| 68 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 69 |
+
model3+=[nn.ReLU(True),]
|
| 70 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 71 |
+
model3+=[nn.ReLU(True),]
|
| 72 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
| 73 |
+
model3+=[nn.ReLU(True),]
|
| 74 |
+
model3+=[norm_layer(256),]
|
| 75 |
+
|
| 76 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 77 |
+
model4+=[nn.ReLU(True),]
|
| 78 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 79 |
+
model4+=[nn.ReLU(True),]
|
| 80 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 81 |
+
model4+=[nn.ReLU(True),]
|
| 82 |
+
model4+=[norm_layer(512),]
|
| 83 |
+
|
| 84 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 85 |
+
model5+=[nn.ReLU(True),]
|
| 86 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 87 |
+
model5+=[nn.ReLU(True),]
|
| 88 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 89 |
+
model5+=[nn.ReLU(True),]
|
| 90 |
+
model5+=[norm_layer(512),]
|
| 91 |
+
|
| 92 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 93 |
+
model6+=[nn.ReLU(True),]
|
| 94 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 95 |
+
model6+=[nn.ReLU(True),]
|
| 96 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
| 97 |
+
model6+=[nn.ReLU(True),]
|
| 98 |
+
model6+=[norm_layer(512),]
|
| 99 |
+
|
| 100 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 101 |
+
model7+=[nn.ReLU(True),]
|
| 102 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 103 |
+
model7+=[nn.ReLU(True),]
|
| 104 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 105 |
+
model7+=[nn.ReLU(True),]
|
| 106 |
+
model7+=[norm_layer(512),]
|
| 107 |
+
|
| 108 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
| 109 |
+
model8+=[nn.ReLU(True),]
|
| 110 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 111 |
+
model8+=[nn.ReLU(True),]
|
| 112 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
| 113 |
+
model8+=[nn.ReLU(True),]
|
| 114 |
+
|
| 115 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
| 116 |
+
|
| 117 |
+
self.model1 = nn.Sequential(*model1)
|
| 118 |
+
self.model2 = nn.Sequential(*model2)
|
| 119 |
+
self.model3 = nn.Sequential(*model3)
|
| 120 |
+
self.model4 = nn.Sequential(*model4)
|
| 121 |
+
self.model5 = nn.Sequential(*model5)
|
| 122 |
+
self.model6 = nn.Sequential(*model6)
|
| 123 |
+
self.model7 = nn.Sequential(*model7)
|
| 124 |
+
self.model8 = nn.Sequential(*model8)
|
| 125 |
+
|
| 126 |
+
self.softmax = nn.Softmax(dim=1)
|
| 127 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
| 128 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
| 129 |
+
|
| 130 |
+
def forward(self, input_l):
|
| 131 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
| 132 |
+
conv2_2 = self.model2(conv1_2)
|
| 133 |
+
conv3_3 = self.model3(conv2_2)
|
| 134 |
+
conv4_3 = self.model4(conv3_3)
|
| 135 |
+
conv5_3 = self.model5(conv4_3)
|
| 136 |
+
conv6_3 = self.model6(conv5_3)
|
| 137 |
+
conv7_3 = self.model7(conv6_3)
|
| 138 |
+
conv8_3 = self.model8(conv7_3)
|
| 139 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
| 140 |
+
|
| 141 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# model_net = torch.load(f'weights/colorizer.pt')
|
| 145 |
+
model = ECCVGenerator()
|
| 146 |
+
model_net.load_state_dict(torch.load(f'weights/colorizer.pt'))
|
| 147 |
|
| 148 |
|
| 149 |
def resize_original(img: Image.Image):
|