Spaces:
Sleeping
Sleeping
Commit
Β·
43b85eb
1
Parent(s):
e8165e3
fix
Browse files
app.py
CHANGED
|
@@ -101,19 +101,11 @@ def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
|
|
| 101 |
merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
|
| 102 |
# drop duplicates
|
| 103 |
merged_df.drop_duplicates(subset=NO_DUPLICATES_COLUMNS, inplace=True)
|
| 104 |
-
merged_df = merged_df[[*list(ALL_COLUMNS_MAPPING.keys()), "generate.latency(s)"]]
|
| 105 |
return merged_df
|
| 106 |
|
| 107 |
|
| 108 |
def get_benchmark_table(bench_df):
|
| 109 |
copy_df = bench_df.copy()
|
| 110 |
-
# adding ** to quantized models score since we can't garantee the score is the same
|
| 111 |
-
copy_df["best_score"] = copy_df.apply(
|
| 112 |
-
lambda x: f"{x['best_score']}**"
|
| 113 |
-
if x["backend.quantization_strategy"] in ["bnb", "gptq"]
|
| 114 |
-
else x["best_score"],
|
| 115 |
-
axis=1,
|
| 116 |
-
)
|
| 117 |
# filter
|
| 118 |
copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())]
|
| 119 |
# rename
|
|
@@ -123,7 +115,13 @@ def get_benchmark_table(bench_df):
|
|
| 123 |
copy_df["Best Scored LLM π"] = copy_df["Best Scored LLM π"].apply(
|
| 124 |
process_model_name
|
| 125 |
)
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
return copy_df
|
| 128 |
|
| 129 |
|
|
|
|
| 101 |
merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
|
| 102 |
# drop duplicates
|
| 103 |
merged_df.drop_duplicates(subset=NO_DUPLICATES_COLUMNS, inplace=True)
|
|
|
|
| 104 |
return merged_df
|
| 105 |
|
| 106 |
|
| 107 |
def get_benchmark_table(bench_df):
|
| 108 |
copy_df = bench_df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
# filter
|
| 110 |
copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())]
|
| 111 |
# rename
|
|
|
|
| 115 |
copy_df["Best Scored LLM π"] = copy_df["Best Scored LLM π"].apply(
|
| 116 |
process_model_name
|
| 117 |
)
|
| 118 |
+
# process quantization
|
| 119 |
+
copy_df["Best Score (%) β¬οΈ"] = copy_df.apply(
|
| 120 |
+
lambda x: f"{x['Best Score (%) β¬οΈ']}**"
|
| 121 |
+
if x["Quantization ποΈ"] in ["BnB.4bit", "GPTQ.4bit"]
|
| 122 |
+
else x["Best Score (%) β¬οΈ"],
|
| 123 |
+
axis=1,
|
| 124 |
+
)
|
| 125 |
return copy_df
|
| 126 |
|
| 127 |
|