Spaces:
Running
Running
Commit
·
bcae4e2
1
Parent(s):
22efa51
debug
Browse files
app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import gradio_client.utils as client_utils
|
| 3 |
-
|
| 4 |
_original = client_utils._json_schema_to_python_type
|
| 5 |
def _safe_json_schema_to_python_type(schema, defs=None):
|
| 6 |
if isinstance(schema, bool):
|
| 7 |
return "Any"
|
| 8 |
return _original(schema, defs)
|
| 9 |
-
|
| 10 |
-
# Override both entry points
|
| 11 |
client_utils._json_schema_to_python_type = _safe_json_schema_to_python_type
|
| 12 |
client_utils.json_schema_to_python_type = _safe_json_schema_to_python_type
|
| 13 |
import gradio as gr
|
|
@@ -37,19 +35,18 @@ class PeptideAnalyzer:
|
|
| 37 |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
| 38 |
]
|
| 39 |
self.complex_residue_patterns = [
|
| 40 |
-
# Kpg - Lys(palmitoyl-Glu-OtBu) - Exact pattern for the specific structure
|
| 41 |
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
|
| 42 |
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
|
| 43 |
(r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'),
|
| 44 |
-
(r'CSC\(c.*?c.*?OC\)', 'Cmt'),
|
| 45 |
-
(r'COc.*?ccc\(C\(SC', 'Cmt'),
|
| 46 |
-
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'),
|
| 47 |
-
# Glu(OAll)
|
| 48 |
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
|
| 49 |
(r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'),
|
| 50 |
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),
|
| 51 |
|
| 52 |
-
# Dtg - Asp(OtBu)-(Dmb)Gly
|
| 53 |
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
|
| 54 |
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
| 55 |
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
|
@@ -71,13 +68,10 @@ class PeptideAnalyzer:
|
|
| 71 |
}
|
| 72 |
def preprocess_complex_residues(self, smiles):
|
| 73 |
"""Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps"""
|
| 74 |
-
# Create a mapping of positions to complex residue types
|
| 75 |
complex_positions = []
|
| 76 |
|
| 77 |
-
# Search for all complex residue patterns
|
| 78 |
for pattern, residue_type in self.complex_residue_patterns:
|
| 79 |
for match in re.finditer(pattern, smiles):
|
| 80 |
-
# Only add if this position doesn't overlap with existing matches
|
| 81 |
if not any(pos['start'] <= match.start() < pos['end'] or
|
| 82 |
pos['start'] < match.end() <= pos['end'] for pos in complex_positions):
|
| 83 |
complex_positions.append({
|
|
@@ -87,56 +81,44 @@ class PeptideAnalyzer:
|
|
| 87 |
'pattern': match.group()
|
| 88 |
})
|
| 89 |
|
| 90 |
-
# Sort by position (to handle potential overlapping matches)
|
| 91 |
complex_positions.sort(key=lambda x: x['start'])
|
| 92 |
|
| 93 |
-
# If no complex residues found, return original SMILES
|
| 94 |
if not complex_positions:
|
| 95 |
return smiles, []
|
| 96 |
|
| 97 |
-
# Build a new SMILES string, protecting complex residues
|
| 98 |
preprocessed_smiles = smiles
|
| 99 |
-
offset = 0
|
| 100 |
|
| 101 |
protected_residues = []
|
| 102 |
|
| 103 |
for pos in complex_positions:
|
| 104 |
-
# Adjust positions based on previous replacements
|
| 105 |
start = pos['start'] + offset
|
| 106 |
end = pos['end'] + offset
|
| 107 |
|
| 108 |
-
# Extract the complex residue part
|
| 109 |
complex_part = preprocessed_smiles[start:end]
|
| 110 |
|
| 111 |
-
# Verify this is a complete residue (should have proper amino acid structure)
|
| 112 |
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
|
| 113 |
-
continue
|
| 114 |
|
| 115 |
-
# Create a placeholder for this complex residue
|
| 116 |
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
|
| 117 |
|
| 118 |
-
# Replace the complex part with the placeholder
|
| 119 |
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
|
| 120 |
|
| 121 |
-
# Track the offset change
|
| 122 |
offset += len(placeholder) - (end - start)
|
| 123 |
|
| 124 |
-
# Store the residue information
|
| 125 |
protected_residues.append({
|
| 126 |
'placeholder': placeholder,
|
| 127 |
'type': pos['type'],
|
| 128 |
'content': complex_part
|
| 129 |
})
|
| 130 |
-
|
| 131 |
-
#print(f"Protected {pos['type']}: {complex_part[:20]}... as {placeholder}")
|
| 132 |
-
|
| 133 |
return preprocessed_smiles, protected_residues
|
| 134 |
def split_on_bonds(self, smiles, protected_residues=None):
|
| 135 |
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
|
| 136 |
positions = []
|
| 137 |
used = set()
|
| 138 |
|
| 139 |
-
#
|
| 140 |
if protected_residues:
|
| 141 |
for residue in protected_residues:
|
| 142 |
match = re.search(residue['placeholder'], smiles)
|
|
@@ -166,7 +148,6 @@ class PeptideAnalyzer:
|
|
| 166 |
})
|
| 167 |
used.update(range(match.start(), match.end()))
|
| 168 |
|
| 169 |
-
# Then find all other bonds
|
| 170 |
for pattern, bond_type in self.bond_patterns:
|
| 171 |
for match in re.finditer(pattern, smiles):
|
| 172 |
if not any(p in range(match.start(), match.end()) for p in used):
|
|
@@ -178,17 +159,13 @@ class PeptideAnalyzer:
|
|
| 178 |
})
|
| 179 |
used.update(range(match.start(), match.end()))
|
| 180 |
|
| 181 |
-
# Sort all positions
|
| 182 |
bond_positions.sort(key=lambda x: x['start'])
|
| 183 |
|
| 184 |
-
# Combine complex residue positions and bond positions
|
| 185 |
all_positions = positions + bond_positions
|
| 186 |
all_positions.sort(key=lambda x: x['start'])
|
| 187 |
|
| 188 |
-
# Create segments
|
| 189 |
segments = []
|
| 190 |
|
| 191 |
-
# First segment (if not starting with a bond or complex residue)
|
| 192 |
if all_positions and all_positions[0]['start'] > 0:
|
| 193 |
segments.append({
|
| 194 |
'content': smiles[0:all_positions[0]['start']],
|
|
@@ -196,12 +173,10 @@ class PeptideAnalyzer:
|
|
| 196 |
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
|
| 197 |
})
|
| 198 |
|
| 199 |
-
# Process segments between positions
|
| 200 |
for i in range(len(all_positions)-1):
|
| 201 |
current = all_positions[i]
|
| 202 |
next_pos = all_positions[i+1]
|
| 203 |
|
| 204 |
-
# Handle complex residues
|
| 205 |
if current['type'] == 'complex':
|
| 206 |
segments.append({
|
| 207 |
'content': current['content'],
|
|
@@ -209,7 +184,6 @@ class PeptideAnalyzer:
|
|
| 209 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
|
| 210 |
'complex_type': current['residue_type']
|
| 211 |
})
|
| 212 |
-
# Handle regular bonds
|
| 213 |
elif current['type'] == 'gly':
|
| 214 |
segments.append({
|
| 215 |
'content': 'NCC(=O)',
|
|
@@ -217,7 +191,6 @@ class PeptideAnalyzer:
|
|
| 217 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
|
| 218 |
})
|
| 219 |
else:
|
| 220 |
-
# Only create segment if there's content between this bond and next position
|
| 221 |
content = smiles[current['end']:next_pos['start']]
|
| 222 |
if content and next_pos['type'] != 'complex':
|
| 223 |
segments.append({
|
|
@@ -268,14 +241,13 @@ class PeptideAnalyzer:
|
|
| 268 |
# Find all numbers used in ring closures
|
| 269 |
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
|
| 270 |
|
| 271 |
-
#
|
| 272 |
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
|
| 273 |
aromatic_cycles = []
|
| 274 |
for match in aromatic_matches:
|
| 275 |
numbers = re.findall(r'[0-9]', match)
|
| 276 |
aromatic_cycles.extend(numbers)
|
| 277 |
|
| 278 |
-
# Numbers that aren't part of aromatic rings are peptide cycles
|
| 279 |
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
|
| 280 |
|
| 281 |
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
|
|
@@ -309,17 +281,15 @@ class PeptideAnalyzer:
|
|
| 309 |
print("DIRECT MATCH: Found Cmt at beginning")
|
| 310 |
return 'Cmt', mods
|
| 311 |
|
| 312 |
-
# VERY EXPLICIT check for the last segment in your example
|
| 313 |
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
|
| 314 |
print("DIRECT MATCH: Found Pro at end")
|
| 315 |
return 'Pro', mods
|
| 316 |
-
|
| 317 |
# Eal - Glu(OAll) - Multiple patterns
|
| 318 |
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
|
| 319 |
return 'Eal', mods
|
| 320 |
-
# Proline (P)
|
| 321 |
if any([
|
| 322 |
-
# Check for any ring number in bond patterns
|
| 323 |
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
|
| 324 |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 325 |
for n in '123456789'
|
|
@@ -327,12 +297,11 @@ class PeptideAnalyzer:
|
|
| 327 |
any(f'CCC{n}' for n in '123456789'))
|
| 328 |
for n in '123456789'
|
| 329 |
]) or any([
|
| 330 |
-
# Check ending patterns with any ring number
|
| 331 |
(f'CCCN{n}' in content and content.endswith('=O') and
|
| 332 |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 333 |
for n in '123456789'
|
| 334 |
]) or any([
|
| 335 |
-
#
|
| 336 |
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 337 |
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 338 |
# N-terminal Pro with any ring number
|
|
@@ -349,35 +318,29 @@ class PeptideAnalyzer:
|
|
| 349 |
# Tryptophan (W) - more specific indole pattern
|
| 350 |
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
|
| 351 |
'c[nH]c' in content.replace(' ', ''):
|
| 352 |
-
# Check stereochemistry for D/L
|
| 353 |
if '[C@H](CC' in content: # D-form
|
| 354 |
return 'trp', mods
|
| 355 |
return 'Trp', mods
|
| 356 |
|
| 357 |
# Lysine (K) - both patterns
|
| 358 |
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
|
| 359 |
-
# Check stereochemistry for D/L
|
| 360 |
if '[C@H](CCCCN)' in content: # D-form
|
| 361 |
return 'lys', mods
|
| 362 |
return 'Lys', mods
|
| 363 |
|
| 364 |
# Arginine (R) - both patterns
|
| 365 |
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
|
| 366 |
-
# Check stereochemistry for D/L
|
| 367 |
if '[C@H](CCCNC(=N)N)' in content: # D-form
|
| 368 |
return 'arg', mods
|
| 369 |
return 'Arg', mods
|
| 370 |
|
| 371 |
-
# Regular residue identification
|
| 372 |
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
|
| 373 |
-
# If it's surrounded by peptide bonds, it's almost certainly Gly
|
| 374 |
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
|
| 375 |
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
| 376 |
return 'Gly', mods
|
| 377 |
|
| 378 |
-
# Case 2: Cyclic terminal glycine - typically contains 'CNC' with ring closure
|
| 379 |
if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)):
|
| 380 |
-
return 'Gly', mods #
|
| 381 |
if not segment.get('bond_before') and segment.get('bond_after'):
|
| 382 |
if content == 'C' or content == 'NC':
|
| 383 |
if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
|
@@ -385,14 +348,12 @@ class PeptideAnalyzer:
|
|
| 385 |
|
| 386 |
# Leucine patterns (L/l)
|
| 387 |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
|
| 388 |
-
# Check stereochemistry for D/L
|
| 389 |
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form
|
| 390 |
return 'leu', mods
|
| 391 |
return 'Leu', mods
|
| 392 |
|
| 393 |
# Threonine patterns (T/t)
|
| 394 |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content:
|
| 395 |
-
# Check both stereochemistry patterns
|
| 396 |
if '[C@H]([C@@H](C)O)' in content: # D-form
|
| 397 |
return 'thr', mods
|
| 398 |
return 'Thr', mods
|
|
@@ -402,7 +363,6 @@ class PeptideAnalyzer:
|
|
| 402 |
|
| 403 |
# Phenylalanine patterns (F/f)
|
| 404 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
|
| 405 |
-
# Check stereochemistry for D/L
|
| 406 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form
|
| 407 |
return 'phe', mods
|
| 408 |
return 'Phe', mods
|
|
@@ -411,15 +371,12 @@ class PeptideAnalyzer:
|
|
| 411 |
'[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or
|
| 412 |
'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content):
|
| 413 |
|
| 414 |
-
# Make sure it's not leucine
|
| 415 |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
|
| 416 |
-
# Check stereochemistry
|
| 417 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
| 418 |
return 'val', mods
|
| 419 |
return 'Val', mods
|
| 420 |
|
| 421 |
# Isoleucine patterns (I/i)
|
| 422 |
-
# First check for various isoleucine patterns while excluding valine
|
| 423 |
if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content,
|
| 424 |
'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content,
|
| 425 |
'[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
|
|
@@ -429,30 +386,26 @@ class PeptideAnalyzer:
|
|
| 429 |
'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content])
|
| 430 |
and 'CC(C)C' not in content): # Exclude valine pattern
|
| 431 |
|
| 432 |
-
# Check stereochemistry for D/L forms
|
| 433 |
if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content,
|
| 434 |
'[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
|
| 435 |
'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content,
|
| 436 |
'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]):
|
| 437 |
# D-form
|
| 438 |
return 'ile', mods
|
| 439 |
-
# All other stereochemistries are treated as L-form
|
| 440 |
return 'Ile', mods
|
| 441 |
-
# Tpb - Thr(PO(OBzl)OH)
|
| 442 |
if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content:
|
| 443 |
return 'Tpb', mods
|
| 444 |
|
| 445 |
# Alanine patterns (A/a)
|
| 446 |
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
| 447 |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
|
| 448 |
-
# Check stereochemistry for D/L
|
| 449 |
if '[C@H](C)' in content: # D-form
|
| 450 |
return 'ala', mods
|
| 451 |
return 'Ala', mods
|
| 452 |
|
| 453 |
# Tyrosine patterns (Y/y)
|
| 454 |
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
|
| 455 |
-
# Check stereochemistry for D/L
|
| 456 |
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form
|
| 457 |
return 'tyr', mods
|
| 458 |
return 'Tyr', mods
|
|
@@ -460,25 +413,24 @@ class PeptideAnalyzer:
|
|
| 460 |
# Serine patterns (S/s)
|
| 461 |
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
| 462 |
if not ('C(C)O' in content or 'COC' in content):
|
| 463 |
-
# Check stereochemistry for D/L
|
| 464 |
if '[C@H](CO)' in content: # D-form
|
| 465 |
return 'ser', mods
|
| 466 |
return 'Ser', mods
|
| 467 |
|
| 468 |
if 'CSSC' in content:
|
| 469 |
-
#
|
| 470 |
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
|
| 471 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
| 472 |
return 'cys-cys', mods
|
| 473 |
return 'Cys-Cys', mods
|
| 474 |
|
| 475 |
-
#
|
| 476 |
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
|
| 477 |
if '[C@H](N)CSSC' in content: # D-form
|
| 478 |
return 'cys-cys', mods
|
| 479 |
return 'Cys-Cys', mods
|
| 480 |
|
| 481 |
-
#
|
| 482 |
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
|
| 483 |
if 'CSSC[C@H](C(=O)O)' in content: # D-form
|
| 484 |
return 'cys-cys', mods
|
|
@@ -486,14 +438,12 @@ class PeptideAnalyzer:
|
|
| 486 |
|
| 487 |
# Cysteine patterns (C/c)
|
| 488 |
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
|
| 489 |
-
# Check stereochemistry for D/L
|
| 490 |
if '[C@H](CS)' in content: # D-form
|
| 491 |
return 'cys', mods
|
| 492 |
return 'Cys', mods
|
| 493 |
|
| 494 |
# Methionine patterns (M/m)
|
| 495 |
if ('CCSC' in content) or ("CSCC" in content):
|
| 496 |
-
# Check stereochemistry for D/L
|
| 497 |
if '[C@H](CCSC)' in content: # D-form
|
| 498 |
return 'met', mods
|
| 499 |
elif '[C@H]' in content:
|
|
@@ -502,34 +452,29 @@ class PeptideAnalyzer:
|
|
| 502 |
|
| 503 |
# Glutamine patterns (Q/q)
|
| 504 |
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
|
| 505 |
-
# Check stereochemistry for D/L
|
| 506 |
if '[C@H](CCC(=O)N)' in content: # D-form
|
| 507 |
return 'gln', mods
|
| 508 |
return 'Gln', mods
|
| 509 |
|
| 510 |
# Asparagine patterns (N/n)
|
| 511 |
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
|
| 512 |
-
# Check stereochemistry for D/L
|
| 513 |
if '[C@H](CC(=O)N)' in content: # D-form
|
| 514 |
return 'asn', mods
|
| 515 |
return 'Asn', mods
|
| 516 |
|
| 517 |
# Glutamic acid patterns (E/e)
|
| 518 |
if ('CCC(=O)O' in content):
|
| 519 |
-
# Check stereochemistry for D/L
|
| 520 |
if '[C@H](CCC(=O)O)' in content: # D-form
|
| 521 |
return 'glu', mods
|
| 522 |
return 'Glu', mods
|
| 523 |
|
| 524 |
# Aspartic acid patterns (D/d)
|
| 525 |
if ('CC(=O)O' in content):
|
| 526 |
-
# Check stereochemistry for D/L
|
| 527 |
if '[C@H](CC(=O)O)' in content: # D-form
|
| 528 |
return 'asp', mods
|
| 529 |
return 'Asp', mods
|
| 530 |
|
| 531 |
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
|
| 532 |
-
# Check stereochemistry for D/L
|
| 533 |
if '[C@H]' in content: # D-form
|
| 534 |
return 'his', mods
|
| 535 |
return 'His', mods
|
|
@@ -539,29 +484,26 @@ class PeptideAnalyzer:
|
|
| 539 |
if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or
|
| 540 |
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
|
| 541 |
return 'Nle', mods
|
| 542 |
-
|
| 543 |
-
# More flexible pattern detection
|
| 544 |
if 'C(C)(C)(N)' in content:
|
| 545 |
return 'Aib', mods
|
| 546 |
|
| 547 |
-
# Partial Aib pattern but NOT part of t-butyl ester
|
| 548 |
if 'C(C)(C)' in content and 'OC(C)(C)C' not in content:
|
| 549 |
if (segment.get('bond_before') and segment.get('bond_after') and
|
| 550 |
any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and
|
| 551 |
any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])):
|
| 552 |
return 'Aib', mods
|
| 553 |
|
| 554 |
-
# Dtg - Asp(OtBu)-(Dmb)Gly
|
| 555 |
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
|
| 556 |
return 'Dtg', mods
|
| 557 |
|
| 558 |
|
| 559 |
-
# Kpg - Lys(palmitoyl-Glu-OtBu)
|
| 560 |
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
|
| 561 |
return 'Kpg', mods
|
| 562 |
|
| 563 |
|
| 564 |
-
|
| 565 |
return None, mods
|
| 566 |
|
| 567 |
def get_modifications(self, segment):
|
|
@@ -582,67 +524,45 @@ class PeptideAnalyzer:
|
|
| 582 |
|
| 583 |
return mods
|
| 584 |
|
| 585 |
-
def analyze_structure(self, smiles):
|
| 586 |
-
|
| 587 |
-
#print("\nAnalyzing structure:", smiles)
|
| 588 |
-
|
| 589 |
-
# Pre-process to identify complex residues first
|
| 590 |
preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles)
|
| 591 |
-
|
| 592 |
-
if protected_residues:
|
| 593 |
-
print(f"Identified {len(protected_residues)} complex residues during pre-processing")
|
| 594 |
-
for i, residue in enumerate(protected_residues):
|
| 595 |
-
print(f"Complex residue {i+1}: {residue['type']}")
|
| 596 |
-
"""
|
| 597 |
-
|
| 598 |
-
# Check if it's cyclic
|
| 599 |
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
|
| 600 |
|
| 601 |
-
# Split into segments, respecting protected residues
|
| 602 |
segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
|
| 603 |
|
| 604 |
-
#print("\nSegment Analysis:")
|
| 605 |
sequence = []
|
| 606 |
for i, segment in enumerate(segments):
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
residue, mods = self.identify_residue(segment)
|
| 614 |
if residue:
|
| 615 |
if mods:
|
| 616 |
sequence.append(f"{residue}({','.join(mods)})")
|
| 617 |
else:
|
| 618 |
sequence.append(residue)
|
| 619 |
-
|
| 620 |
-
#print(f"Identified as: {residue}")
|
| 621 |
-
#print(f"Modifications: {mods}")
|
| 622 |
else:
|
| 623 |
-
|
| 624 |
|
| 625 |
-
# Format the sequence
|
| 626 |
three_letter = '-'.join(sequence)
|
| 627 |
|
| 628 |
-
# Use the mapping to create one-letter code
|
| 629 |
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
|
| 630 |
|
| 631 |
if is_cyclic:
|
| 632 |
three_letter = f"cyclo({three_letter})"
|
| 633 |
one_letter = f"cyclo({one_letter})"
|
| 634 |
-
|
| 635 |
-
print(f"\nFinal sequence: {three_letter}")
|
| 636 |
-
print(f"One-letter code: {one_letter}")
|
| 637 |
-
print(f"Is cyclic: {is_cyclic}")
|
| 638 |
-
print(f"Peptide cycles: {peptide_cycles}")
|
| 639 |
-
print(f"Aromatic cycles: {aromatic_cycles}")
|
| 640 |
-
"""
|
| 641 |
return {
|
| 642 |
'three_letter': three_letter,
|
| 643 |
'one_letter': one_letter,
|
| 644 |
'is_cyclic': is_cyclic,
|
| 645 |
-
'residues': sequence
|
|
|
|
| 646 |
}
|
| 647 |
|
| 648 |
def annotate_cyclic_structure(mol, sequence):
|
|
@@ -651,12 +571,10 @@ def annotate_cyclic_structure(mol, sequence):
|
|
| 651 |
|
| 652 |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
|
| 653 |
|
| 654 |
-
# Draw molecule first
|
| 655 |
drawer.drawOptions().addAtomIndices = False
|
| 656 |
drawer.DrawMolecule(mol)
|
| 657 |
drawer.FinishDrawing()
|
| 658 |
|
| 659 |
-
# Convert to PIL Image
|
| 660 |
img = Image.open(BytesIO(drawer.GetDrawingText()))
|
| 661 |
draw = ImageDraw.Draw(img)
|
| 662 |
try:
|
|
@@ -668,7 +586,6 @@ def annotate_cyclic_structure(mol, sequence):
|
|
| 668 |
print("Warning: TrueType fonts not available, using default font")
|
| 669 |
small_font = ImageFont.load_default()
|
| 670 |
|
| 671 |
-
# Header
|
| 672 |
seq_text = f"Sequence: {sequence}"
|
| 673 |
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
|
| 674 |
padding = 10
|
|
@@ -751,7 +668,6 @@ def create_enhanced_linear_viz(sequence, smiles):
|
|
| 751 |
text += f" ({', '.join(mods)})"
|
| 752 |
color = 'blue'
|
| 753 |
else:
|
| 754 |
-
# Must be a bond
|
| 755 |
text = f"Bond {i}: "
|
| 756 |
if 'O-linked' in segment.get('bond_after', ''):
|
| 757 |
text += "ester"
|
|
@@ -893,7 +809,7 @@ class PeptideStructureGenerator:
|
|
| 893 |
def process_input(
|
| 894 |
smiles_input=None,
|
| 895 |
file_obj=None,
|
| 896 |
-
show_linear=False,
|
| 897 |
show_segment_details=False,
|
| 898 |
generate_3d=False,
|
| 899 |
use_uff=False
|
|
@@ -946,60 +862,22 @@ def process_input(
|
|
| 946 |
except Exception as e:
|
| 947 |
return f"Error generating 3D structures: {str(e)}", None, None, []
|
| 948 |
|
| 949 |
-
analysis = analyzer.analyze_structure(smiles)
|
| 950 |
three_letter = analysis['three_letter']
|
| 951 |
one_letter = analysis['one_letter']
|
| 952 |
is_cyclic = analysis['is_cyclic']
|
| 953 |
-
|
| 954 |
-
# Only include segment analysis in output if requested
|
| 955 |
-
if show_segment_details:
|
| 956 |
-
segments = analyzer.split_on_bonds(smiles)
|
| 957 |
-
|
| 958 |
-
sequence_parts = []
|
| 959 |
-
output_text = ""
|
| 960 |
-
output_text += "Segment Analysis:\n"
|
| 961 |
-
for i, segment in enumerate(segments):
|
| 962 |
-
output_text += f"\nSegment {i}:\n"
|
| 963 |
-
output_text += f"Content: {segment['content']}\n"
|
| 964 |
-
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
|
| 965 |
-
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
|
| 966 |
-
|
| 967 |
-
residue, mods = analyzer.identify_residue(segment)
|
| 968 |
-
if residue:
|
| 969 |
-
if mods:
|
| 970 |
-
sequence_parts.append(f"{residue}({','.join(mods)})")
|
| 971 |
-
else:
|
| 972 |
-
sequence_parts.append(residue)
|
| 973 |
-
output_text += f"Identified as: {residue}\n"
|
| 974 |
-
output_text += f"Modifications: {mods}\n"
|
| 975 |
-
else:
|
| 976 |
-
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
|
| 977 |
-
output_text += "\n"
|
| 978 |
-
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
|
| 979 |
-
three_letter = '-'.join(sequence_parts)
|
| 980 |
-
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
|
| 981 |
-
else:
|
| 982 |
-
pass
|
| 983 |
|
| 984 |
img_cyclic = annotate_cyclic_structure(mol, three_letter)
|
| 985 |
-
|
| 986 |
-
# Create linear representation if requested
|
| 987 |
-
img_linear = None
|
| 988 |
-
if show_linear:
|
| 989 |
-
fig_linear = create_enhanced_linear_viz(three_letter, smiles)
|
| 990 |
-
buf = BytesIO()
|
| 991 |
-
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
|
| 992 |
-
buf.seek(0)
|
| 993 |
-
img_linear = Image.open(buf)
|
| 994 |
-
plt.close(fig_linear)
|
| 995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 996 |
summary = "Summary:\n"
|
| 997 |
summary += f"Sequence: {three_letter}\n"
|
| 998 |
summary += f"One-letter code: {one_letter}\n"
|
| 999 |
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
|
| 1000 |
-
#if is_cyclic:
|
| 1001 |
-
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
|
| 1002 |
-
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
|
| 1003 |
|
| 1004 |
if structure_files:
|
| 1005 |
summary += "\n3D Structures Generated:\n"
|
|
@@ -1007,11 +885,11 @@ def process_input(
|
|
| 1007 |
summary += f"- {os.path.basename(filepath)}\n"
|
| 1008 |
|
| 1009 |
#return summary, img_cyclic, img_linear, structure_files if structure_files else None
|
| 1010 |
-
return summary, img_cyclic
|
| 1011 |
|
| 1012 |
except Exception as e:
|
| 1013 |
#return f"Error processing SMILES: {str(e)}", None, None, []
|
| 1014 |
-
return f"Error processing SMILES: {str(e)}", None
|
| 1015 |
# Handle file input
|
| 1016 |
if file_obj is not None:
|
| 1017 |
try:
|
|
@@ -1032,7 +910,6 @@ def process_input(
|
|
| 1032 |
continue
|
| 1033 |
|
| 1034 |
try:
|
| 1035 |
-
# Process the structure
|
| 1036 |
result = analyzer.analyze_structure(smiles)
|
| 1037 |
|
| 1038 |
output_text += f"\nSummary for SMILES: {smiles}\n"
|
|
@@ -1053,7 +930,7 @@ def process_input(
|
|
| 1053 |
output_text or "No analysis done.",
|
| 1054 |
img_cyclic if 'img_cyclic' in locals() else None,
|
| 1055 |
#img_linear if 'img_linear' in locals() else None,
|
| 1056 |
-
|
| 1057 |
)
|
| 1058 |
|
| 1059 |
iface = gr.Interface(
|
|
@@ -1063,11 +940,24 @@ iface = gr.Interface(
|
|
| 1063 |
label="Enter SMILES string",
|
| 1064 |
placeholder="Enter SMILES notation of peptide...",
|
| 1065 |
lines=2
|
| 1066 |
-
),
|
| 1067 |
-
|
| 1068 |
-
|
| 1069 |
-
|
| 1070 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1071 |
outputs=[
|
| 1072 |
gr.Textbox(
|
| 1073 |
label="Analysis Results",
|
|
@@ -1077,6 +967,10 @@ iface = gr.Interface(
|
|
| 1077 |
label="2D Structure with Annotations",
|
| 1078 |
type="pil"
|
| 1079 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1080 |
],
|
| 1081 |
title="Peptide Structure Analyzer and Visualizer",
|
| 1082 |
description='''
|
|
@@ -1105,30 +999,4 @@ iface = gr.Interface(
|
|
| 1105 |
)
|
| 1106 |
|
| 1107 |
if __name__ == "__main__":
|
| 1108 |
-
iface.launch(share=True)
|
| 1109 |
-
"""
|
| 1110 |
-
from fastapi import FastAPI
|
| 1111 |
-
import gradio as gr
|
| 1112 |
-
|
| 1113 |
-
# 1) Make a FastAPI with no OpenAPI/docs routes
|
| 1114 |
-
app = FastAPI(docs_url=None, redoc_url=None, openapi_url=None)
|
| 1115 |
-
|
| 1116 |
-
# 2) Build your Interface as before
|
| 1117 |
-
iface = gr.Interface(
|
| 1118 |
-
fn=process_input,
|
| 1119 |
-
inputs=[ gr.Textbox(label="Enter SMILES string", lines=2) ],
|
| 1120 |
-
outputs=[
|
| 1121 |
-
gr.Textbox(label="Analysis Results", lines=10),
|
| 1122 |
-
gr.Image(label="2D Structure with Annotations", type="pil"),
|
| 1123 |
-
],
|
| 1124 |
-
title="Peptide Structure Analyzer and Visualizer",
|
| 1125 |
-
flagging_mode="never"
|
| 1126 |
-
)
|
| 1127 |
-
|
| 1128 |
-
# 3) Mount it at “/”
|
| 1129 |
-
app = gr.mount_gradio_app(app, iface, path="/")
|
| 1130 |
-
|
| 1131 |
-
if __name__ == "__main__":
|
| 1132 |
-
import uvicorn
|
| 1133 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 1134 |
-
"""
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio_client.utils as client_utils
|
| 3 |
+
# Monkey path gradio_client issue
|
| 4 |
_original = client_utils._json_schema_to_python_type
|
| 5 |
def _safe_json_schema_to_python_type(schema, defs=None):
|
| 6 |
if isinstance(schema, bool):
|
| 7 |
return "Any"
|
| 8 |
return _original(schema, defs)
|
|
|
|
|
|
|
| 9 |
client_utils._json_schema_to_python_type = _safe_json_schema_to_python_type
|
| 10 |
client_utils.json_schema_to_python_type = _safe_json_schema_to_python_type
|
| 11 |
import gradio as gr
|
|
|
|
| 35 |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
| 36 |
]
|
| 37 |
self.complex_residue_patterns = [
|
|
|
|
| 38 |
(r'\[C[@]H\]\(CCCNC\(=O\)CCC\[C@@H\]\(NC\(=O\)CCCCCCCCCCCCCCCC\)C\(=O\)OC\(C\)\(C\)C\)', 'Kpg'),
|
| 39 |
(r'CCCCCCCCCCCCCCCCC\(=O\)N\[C@H\]\(CCCC\(=O\)NCCC\[C@@H\]', 'Kpg'),
|
| 40 |
(r'\[C@*H\]\(CSC\(c\d+ccccc\d+\)\(c\d+ccccc\d+\)c\d+ccc\(OC\)cc\d+\)', 'Cmt'),
|
| 41 |
+
(r'CSC\(c.*?c.*?OC\)', 'Cmt'),
|
| 42 |
+
(r'COc.*?ccc\(C\(SC', 'Cmt'),
|
| 43 |
+
(r'c2ccccc2\)c2ccccc2\)cc', 'Cmt'),
|
| 44 |
+
# Glu(OAll)
|
| 45 |
(r'C=CCOC\(=O\)CC\[C@@H\]', 'Eal'),
|
| 46 |
(r'\(C\)OP\(=O\)\(O\)OCc\d+ccccc\d+', 'Tpb'),
|
| 47 |
#(r'COc\d+ccc\(C\(SC\[C@@H\]\d+.*?\)\(c\d+ccccc\d+\)c\d+ccccc\d+\)cc\d+', 'Cmt-cyclic'),
|
| 48 |
|
| 49 |
+
# Dtg - Asp(OtBu)-(Dmb)Gly
|
| 50 |
(r'CN\(Cc\d+ccc\(OC\)cc\d+OC\)C\(=O\)\[C@H\]\(CC\(=O\)OC\(C\)\(C\)C\)', 'Dtg'),
|
| 51 |
(r'C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
| 52 |
(r'N\[C@@H\]\(CC\(=O\)OC\(C\)\(C\)C\)C\(=O\)N\(CC\d+=C\(C=C\(C=C\d+\)OC\)OC\)CC\(=O\)', 'Dtg'),
|
|
|
|
| 68 |
}
|
| 69 |
def preprocess_complex_residues(self, smiles):
|
| 70 |
"""Identify and protect complex residues with internal peptide bonds - improved to prevent overlaps"""
|
|
|
|
| 71 |
complex_positions = []
|
| 72 |
|
|
|
|
| 73 |
for pattern, residue_type in self.complex_residue_patterns:
|
| 74 |
for match in re.finditer(pattern, smiles):
|
|
|
|
| 75 |
if not any(pos['start'] <= match.start() < pos['end'] or
|
| 76 |
pos['start'] < match.end() <= pos['end'] for pos in complex_positions):
|
| 77 |
complex_positions.append({
|
|
|
|
| 81 |
'pattern': match.group()
|
| 82 |
})
|
| 83 |
|
|
|
|
| 84 |
complex_positions.sort(key=lambda x: x['start'])
|
| 85 |
|
|
|
|
| 86 |
if not complex_positions:
|
| 87 |
return smiles, []
|
| 88 |
|
|
|
|
| 89 |
preprocessed_smiles = smiles
|
| 90 |
+
offset = 0
|
| 91 |
|
| 92 |
protected_residues = []
|
| 93 |
|
| 94 |
for pos in complex_positions:
|
|
|
|
| 95 |
start = pos['start'] + offset
|
| 96 |
end = pos['end'] + offset
|
| 97 |
|
|
|
|
| 98 |
complex_part = preprocessed_smiles[start:end]
|
| 99 |
|
|
|
|
| 100 |
if not ('[C@H]' in complex_part or '[C@@H]' in complex_part):
|
| 101 |
+
continue
|
| 102 |
|
|
|
|
| 103 |
placeholder = f"COMPLEX_RESIDUE_{len(protected_residues)}"
|
| 104 |
|
|
|
|
| 105 |
preprocessed_smiles = preprocessed_smiles[:start] + placeholder + preprocessed_smiles[end:]
|
| 106 |
|
|
|
|
| 107 |
offset += len(placeholder) - (end - start)
|
| 108 |
|
|
|
|
| 109 |
protected_residues.append({
|
| 110 |
'placeholder': placeholder,
|
| 111 |
'type': pos['type'],
|
| 112 |
'content': complex_part
|
| 113 |
})
|
| 114 |
+
|
|
|
|
|
|
|
| 115 |
return preprocessed_smiles, protected_residues
|
| 116 |
def split_on_bonds(self, smiles, protected_residues=None):
|
| 117 |
"""Split SMILES into segments based on peptide bonds, with improved handling of protected residues"""
|
| 118 |
positions = []
|
| 119 |
used = set()
|
| 120 |
|
| 121 |
+
# Handle protected complex residues if any
|
| 122 |
if protected_residues:
|
| 123 |
for residue in protected_residues:
|
| 124 |
match = re.search(residue['placeholder'], smiles)
|
|
|
|
| 148 |
})
|
| 149 |
used.update(range(match.start(), match.end()))
|
| 150 |
|
|
|
|
| 151 |
for pattern, bond_type in self.bond_patterns:
|
| 152 |
for match in re.finditer(pattern, smiles):
|
| 153 |
if not any(p in range(match.start(), match.end()) for p in used):
|
|
|
|
| 159 |
})
|
| 160 |
used.update(range(match.start(), match.end()))
|
| 161 |
|
|
|
|
| 162 |
bond_positions.sort(key=lambda x: x['start'])
|
| 163 |
|
|
|
|
| 164 |
all_positions = positions + bond_positions
|
| 165 |
all_positions.sort(key=lambda x: x['start'])
|
| 166 |
|
|
|
|
| 167 |
segments = []
|
| 168 |
|
|
|
|
| 169 |
if all_positions and all_positions[0]['start'] > 0:
|
| 170 |
segments.append({
|
| 171 |
'content': smiles[0:all_positions[0]['start']],
|
|
|
|
| 173 |
'complex_after': all_positions[0]['pattern'] if all_positions[0]['type'] == 'complex' else None
|
| 174 |
})
|
| 175 |
|
|
|
|
| 176 |
for i in range(len(all_positions)-1):
|
| 177 |
current = all_positions[i]
|
| 178 |
next_pos = all_positions[i+1]
|
| 179 |
|
|
|
|
| 180 |
if current['type'] == 'complex':
|
| 181 |
segments.append({
|
| 182 |
'content': current['content'],
|
|
|
|
| 184 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None,
|
| 185 |
'complex_type': current['residue_type']
|
| 186 |
})
|
|
|
|
| 187 |
elif current['type'] == 'gly':
|
| 188 |
segments.append({
|
| 189 |
'content': 'NCC(=O)',
|
|
|
|
| 191 |
'bond_after': next_pos['pattern'] if next_pos['type'] != 'complex' else None
|
| 192 |
})
|
| 193 |
else:
|
|
|
|
| 194 |
content = smiles[current['end']:next_pos['start']]
|
| 195 |
if content and next_pos['type'] != 'complex':
|
| 196 |
segments.append({
|
|
|
|
| 241 |
# Find all numbers used in ring closures
|
| 242 |
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
|
| 243 |
|
| 244 |
+
# Aromatic ring numbers
|
| 245 |
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
|
| 246 |
aromatic_cycles = []
|
| 247 |
for match in aromatic_matches:
|
| 248 |
numbers = re.findall(r'[0-9]', match)
|
| 249 |
aromatic_cycles.extend(numbers)
|
| 250 |
|
|
|
|
| 251 |
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
|
| 252 |
|
| 253 |
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
|
|
|
|
| 281 |
print("DIRECT MATCH: Found Cmt at beginning")
|
| 282 |
return 'Cmt', mods
|
| 283 |
|
|
|
|
| 284 |
if '[C@@H]3CCCN3C2=O)(c2ccccc2)c2ccccc2)cc' in content:
|
| 285 |
print("DIRECT MATCH: Found Pro at end")
|
| 286 |
return 'Pro', mods
|
| 287 |
+
|
| 288 |
# Eal - Glu(OAll) - Multiple patterns
|
| 289 |
if 'CCC(=O)OCC=C' in content or 'CC(=O)OCC=C' in content or 'C=CCOC(=O)CC' in content:
|
| 290 |
return 'Eal', mods
|
| 291 |
+
# Proline (P)
|
| 292 |
if any([
|
|
|
|
| 293 |
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
|
| 294 |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 295 |
for n in '123456789'
|
|
|
|
| 297 |
any(f'CCC{n}' for n in '123456789'))
|
| 298 |
for n in '123456789'
|
| 299 |
]) or any([
|
|
|
|
| 300 |
(f'CCCN{n}' in content and content.endswith('=O') and
|
| 301 |
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 302 |
for n in '123456789'
|
| 303 |
]) or any([
|
| 304 |
+
# CCC[C@H]n
|
| 305 |
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 306 |
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 307 |
# N-terminal Pro with any ring number
|
|
|
|
| 318 |
# Tryptophan (W) - more specific indole pattern
|
| 319 |
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
|
| 320 |
'c[nH]c' in content.replace(' ', ''):
|
|
|
|
| 321 |
if '[C@H](CC' in content: # D-form
|
| 322 |
return 'trp', mods
|
| 323 |
return 'Trp', mods
|
| 324 |
|
| 325 |
# Lysine (K) - both patterns
|
| 326 |
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
|
|
|
|
| 327 |
if '[C@H](CCCCN)' in content: # D-form
|
| 328 |
return 'lys', mods
|
| 329 |
return 'Lys', mods
|
| 330 |
|
| 331 |
# Arginine (R) - both patterns
|
| 332 |
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
|
|
|
|
| 333 |
if '[C@H](CCCNC(=N)N)' in content: # D-form
|
| 334 |
return 'arg', mods
|
| 335 |
return 'Arg', mods
|
| 336 |
|
|
|
|
| 337 |
if content == 'C' and segment.get('bond_before') and segment.get('bond_after'):
|
|
|
|
| 338 |
if ('C(=O)N' in segment['bond_before'] or 'NC(=O)' in segment['bond_before'] or 'N(C)C(=O)' in segment['bond_before']) and \
|
| 339 |
('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
| 340 |
return 'Gly', mods
|
| 341 |
|
|
|
|
| 342 |
if 'CNC' in content and any(f'C{i}=' in content for i in range(1, 10)):
|
| 343 |
+
return 'Gly', mods #'CNC1=O'
|
| 344 |
if not segment.get('bond_before') and segment.get('bond_after'):
|
| 345 |
if content == 'C' or content == 'NC':
|
| 346 |
if ('NC(=O)' in segment['bond_after'] or 'C(=O)N' in segment['bond_after'] or 'N(C)C(=O)' in segment['bond_after']):
|
|
|
|
| 348 |
|
| 349 |
# Leucine patterns (L/l)
|
| 350 |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content or '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content or (('N[C@H](CCC(C)C)' in content or 'N[C@@H](CCC(C)C)' in content) and segment.get('bond_before') is None):
|
|
|
|
| 351 |
if '[C@H](CC(C)C)' in content or 'CC(C)C[C@H]' in content: # D-form
|
| 352 |
return 'leu', mods
|
| 353 |
return 'Leu', mods
|
| 354 |
|
| 355 |
# Threonine patterns (T/t)
|
| 356 |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H]([C@H](C)O)' in content or '[C@H]([C@@H](C)O)' in content:
|
|
|
|
| 357 |
if '[C@H]([C@@H](C)O)' in content: # D-form
|
| 358 |
return 'thr', mods
|
| 359 |
return 'Thr', mods
|
|
|
|
| 363 |
|
| 364 |
# Phenylalanine patterns (F/f)
|
| 365 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content) or re.search(r'\[C@@H\]\(Cc\d+ccccc\d+\)', content):
|
|
|
|
| 366 |
if re.search(r'\[C@H\]\(Cc\d+ccccc\d+\)', content): # D-form
|
| 367 |
return 'phe', mods
|
| 368 |
return 'Phe', mods
|
|
|
|
| 371 |
'[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content or
|
| 372 |
'C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content):
|
| 373 |
|
|
|
|
| 374 |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]', 'CCC(=O)']):
|
|
|
|
| 375 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
| 376 |
return 'val', mods
|
| 377 |
return 'Val', mods
|
| 378 |
|
| 379 |
# Isoleucine patterns (I/i)
|
|
|
|
| 380 |
if (any(['CC[C@@H](C)' in content, '[C@@H](C)CC' in content, '[C@@H](CC)C' in content,
|
| 381 |
'C(C)C[C@@H]' in content, '[C@@H]([C@H](C)CC)' in content, '[C@H]([C@@H](C)CC)' in content,
|
| 382 |
'[C@@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
|
|
|
|
| 386 |
'CC[C@H](C)[C@H]' in content, 'CC[C@@H](C)[C@@H]' in content])
|
| 387 |
and 'CC(C)C' not in content): # Exclude valine pattern
|
| 388 |
|
|
|
|
| 389 |
if any(['[C@H]([C@@H](CC)C)' in content, '[C@H](CC)C' in content,
|
| 390 |
'[C@H]([C@@H](C)CC)' in content, '[C@H]([C@H](C)CC)' in content,
|
| 391 |
'C[C@@H](CC)[C@H]' in content, 'C[C@H](CC)[C@H]' in content,
|
| 392 |
'CC[C@@H](C)[C@H]' in content, 'CC[C@H](C)[C@H]' in content]):
|
| 393 |
# D-form
|
| 394 |
return 'ile', mods
|
|
|
|
| 395 |
return 'Ile', mods
|
| 396 |
+
# Tpb - Thr(PO(OBzl)OH)
|
| 397 |
if re.search(r'\(C\)OP\(=O\)\(O\)OCc[0-9]ccccc[0-9]', content) or 'OP(=O)(O)OCC' in content:
|
| 398 |
return 'Tpb', mods
|
| 399 |
|
| 400 |
# Alanine patterns (A/a)
|
| 401 |
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
| 402 |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
|
|
|
|
| 403 |
if '[C@H](C)' in content: # D-form
|
| 404 |
return 'ala', mods
|
| 405 |
return 'Ala', mods
|
| 406 |
|
| 407 |
# Tyrosine patterns (Y/y)
|
| 408 |
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
|
|
|
|
| 409 |
if '[C@H](Cc1ccc(O)cc1)' in content: # D-form
|
| 410 |
return 'tyr', mods
|
| 411 |
return 'Tyr', mods
|
|
|
|
| 413 |
# Serine patterns (S/s)
|
| 414 |
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
| 415 |
if not ('C(C)O' in content or 'COC' in content):
|
|
|
|
| 416 |
if '[C@H](CO)' in content: # D-form
|
| 417 |
return 'ser', mods
|
| 418 |
return 'Ser', mods
|
| 419 |
|
| 420 |
if 'CSSC' in content:
|
| 421 |
+
# cysteine-cysteine bridge
|
| 422 |
if re.search(r'\[C@@H\].*CSSC.*\[C@@H\]', content) or re.search(r'\[C@H\].*CSSC.*\[C@H\]', content):
|
| 423 |
if '[C@H]' in content and not '[C@@H]' in content: # D-form
|
| 424 |
return 'cys-cys', mods
|
| 425 |
return 'Cys-Cys', mods
|
| 426 |
|
| 427 |
+
# N-terminal amine group
|
| 428 |
if '[C@@H](N)CSSC' in content or '[C@H](N)CSSC' in content:
|
| 429 |
if '[C@H](N)CSSC' in content: # D-form
|
| 430 |
return 'cys-cys', mods
|
| 431 |
return 'Cys-Cys', mods
|
| 432 |
|
| 433 |
+
# C-terminal carboxyl
|
| 434 |
if 'CSSC[C@@H](C(=O)O)' in content or 'CSSC[C@H](C(=O)O)' in content:
|
| 435 |
if 'CSSC[C@H](C(=O)O)' in content: # D-form
|
| 436 |
return 'cys-cys', mods
|
|
|
|
| 438 |
|
| 439 |
# Cysteine patterns (C/c)
|
| 440 |
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
|
|
|
|
| 441 |
if '[C@H](CS)' in content: # D-form
|
| 442 |
return 'cys', mods
|
| 443 |
return 'Cys', mods
|
| 444 |
|
| 445 |
# Methionine patterns (M/m)
|
| 446 |
if ('CCSC' in content) or ("CSCC" in content):
|
|
|
|
| 447 |
if '[C@H](CCSC)' in content: # D-form
|
| 448 |
return 'met', mods
|
| 449 |
elif '[C@H]' in content:
|
|
|
|
| 452 |
|
| 453 |
# Glutamine patterns (Q/q)
|
| 454 |
if (content == '[C@@H](CC' or content == '[C@H](CC' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CCC(=O)N' in content) or ('CCC(N)=O' in content):
|
|
|
|
| 455 |
if '[C@H](CCC(=O)N)' in content: # D-form
|
| 456 |
return 'gln', mods
|
| 457 |
return 'Gln', mods
|
| 458 |
|
| 459 |
# Asparagine patterns (N/n)
|
| 460 |
if (content == '[C@@H](C' or content == '[C@H](C' and segment.get('bond_before')=='C(=O)N' and segment.get('bond_after')=='C(=O)N') or ('CC(=O)N' in content) or ('CCN(=O)' in content) or ('CC(N)=O' in content):
|
|
|
|
| 461 |
if '[C@H](CC(=O)N)' in content: # D-form
|
| 462 |
return 'asn', mods
|
| 463 |
return 'Asn', mods
|
| 464 |
|
| 465 |
# Glutamic acid patterns (E/e)
|
| 466 |
if ('CCC(=O)O' in content):
|
|
|
|
| 467 |
if '[C@H](CCC(=O)O)' in content: # D-form
|
| 468 |
return 'glu', mods
|
| 469 |
return 'Glu', mods
|
| 470 |
|
| 471 |
# Aspartic acid patterns (D/d)
|
| 472 |
if ('CC(=O)O' in content):
|
|
|
|
| 473 |
if '[C@H](CC(=O)O)' in content: # D-form
|
| 474 |
return 'asp', mods
|
| 475 |
return 'Asp', mods
|
| 476 |
|
| 477 |
if re.search(r'Cc\d+c\[nH\]cn\d+', content) or re.search(r'Cc\d+cnc\[nH\]\d+', content):
|
|
|
|
| 478 |
if '[C@H]' in content: # D-form
|
| 479 |
return 'his', mods
|
| 480 |
return 'His', mods
|
|
|
|
| 484 |
if ('N[C@@H](CCCC)' in content or '[C@@H](CCCC)' in content or 'CCCC[C@@H]' in content or
|
| 485 |
'N[C@H](CCCC)' in content or '[C@H](CCCC)' in content) and 'CC(C)' not in content:
|
| 486 |
return 'Nle', mods
|
| 487 |
+
|
|
|
|
| 488 |
if 'C(C)(C)(N)' in content:
|
| 489 |
return 'Aib', mods
|
| 490 |
|
|
|
|
| 491 |
if 'C(C)(C)' in content and 'OC(C)(C)C' not in content:
|
| 492 |
if (segment.get('bond_before') and segment.get('bond_after') and
|
| 493 |
any(bond in segment['bond_before'] for bond in ['C(=O)N', 'NC(=O)', 'N(C)C(=O)']) and
|
| 494 |
any(bond in segment['bond_after'] for bond in ['NC(=O)', 'C(=O)N', 'N(C)C(=O)'])):
|
| 495 |
return 'Aib', mods
|
| 496 |
|
| 497 |
+
# Dtg - Asp(OtBu)-(Dmb)Gly
|
| 498 |
if 'CC(=O)OC(C)(C)C' in content and 'CC1=C(C=C(C=C1)OC)OC' in content:
|
| 499 |
return 'Dtg', mods
|
| 500 |
|
| 501 |
|
| 502 |
+
# Kpg - Lys(palmitoyl-Glu-OtBu)
|
| 503 |
if 'CCCNC(=O)' in content and 'CCCCCCCCCCCC' in content:
|
| 504 |
return 'Kpg', mods
|
| 505 |
|
| 506 |
|
|
|
|
| 507 |
return None, mods
|
| 508 |
|
| 509 |
def get_modifications(self, segment):
|
|
|
|
| 524 |
|
| 525 |
return mods
|
| 526 |
|
| 527 |
+
def analyze_structure(self, smiles, verbose=False):
|
| 528 |
+
logs = []
|
|
|
|
|
|
|
|
|
|
| 529 |
preprocessed_smiles, protected_residues = self.preprocess_complex_residues(smiles)
|
| 530 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
|
| 532 |
|
|
|
|
| 533 |
segments = self.split_on_bonds(preprocessed_smiles, protected_residues)
|
| 534 |
|
|
|
|
| 535 |
sequence = []
|
| 536 |
for i, segment in enumerate(segments):
|
| 537 |
+
if verbose:
|
| 538 |
+
logs.append(f"\nSegment {i}:")
|
| 539 |
+
logs.append(f" Content: {segment.get('content','None')}")
|
| 540 |
+
logs.append(f" Bond before: {segment.get('bond_before','None')}")
|
| 541 |
+
logs.append(f" Bond after: {segment.get('bond_after','None')}")
|
| 542 |
+
|
| 543 |
residue, mods = self.identify_residue(segment)
|
| 544 |
if residue:
|
| 545 |
if mods:
|
| 546 |
sequence.append(f"{residue}({','.join(mods)})")
|
| 547 |
else:
|
| 548 |
sequence.append(residue)
|
|
|
|
|
|
|
|
|
|
| 549 |
else:
|
| 550 |
+
logs.append(f"Warning: Could not identify residue in segment: {segment.get('content', 'None')}")
|
| 551 |
|
|
|
|
| 552 |
three_letter = '-'.join(sequence)
|
| 553 |
|
|
|
|
| 554 |
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
|
| 555 |
|
| 556 |
if is_cyclic:
|
| 557 |
three_letter = f"cyclo({three_letter})"
|
| 558 |
one_letter = f"cyclo({one_letter})"
|
| 559 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
return {
|
| 561 |
'three_letter': three_letter,
|
| 562 |
'one_letter': one_letter,
|
| 563 |
'is_cyclic': is_cyclic,
|
| 564 |
+
'residues': sequence,
|
| 565 |
+
'details': "\n".join(logs)
|
| 566 |
}
|
| 567 |
|
| 568 |
def annotate_cyclic_structure(mol, sequence):
|
|
|
|
| 571 |
|
| 572 |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
|
| 573 |
|
|
|
|
| 574 |
drawer.drawOptions().addAtomIndices = False
|
| 575 |
drawer.DrawMolecule(mol)
|
| 576 |
drawer.FinishDrawing()
|
| 577 |
|
|
|
|
| 578 |
img = Image.open(BytesIO(drawer.GetDrawingText()))
|
| 579 |
draw = ImageDraw.Draw(img)
|
| 580 |
try:
|
|
|
|
| 586 |
print("Warning: TrueType fonts not available, using default font")
|
| 587 |
small_font = ImageFont.load_default()
|
| 588 |
|
|
|
|
| 589 |
seq_text = f"Sequence: {sequence}"
|
| 590 |
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
|
| 591 |
padding = 10
|
|
|
|
| 668 |
text += f" ({', '.join(mods)})"
|
| 669 |
color = 'blue'
|
| 670 |
else:
|
|
|
|
| 671 |
text = f"Bond {i}: "
|
| 672 |
if 'O-linked' in segment.get('bond_after', ''):
|
| 673 |
text += "ester"
|
|
|
|
| 809 |
def process_input(
|
| 810 |
smiles_input=None,
|
| 811 |
file_obj=None,
|
| 812 |
+
#show_linear=False,
|
| 813 |
show_segment_details=False,
|
| 814 |
generate_3d=False,
|
| 815 |
use_uff=False
|
|
|
|
| 862 |
except Exception as e:
|
| 863 |
return f"Error generating 3D structures: {str(e)}", None, None, []
|
| 864 |
|
| 865 |
+
analysis = analyzer.analyze_structure(smiles, verbose=show_segment_details)
|
| 866 |
three_letter = analysis['three_letter']
|
| 867 |
one_letter = analysis['one_letter']
|
| 868 |
is_cyclic = analysis['is_cyclic']
|
| 869 |
+
details = analysis.get('details', "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 870 |
|
| 871 |
img_cyclic = annotate_cyclic_structure(mol, three_letter)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 872 |
|
| 873 |
+
summary = ""
|
| 874 |
+
if show_segment_details and details:
|
| 875 |
+
summary += "Segment Analysis:\n"
|
| 876 |
+
summary += details + "\n\n"
|
| 877 |
summary = "Summary:\n"
|
| 878 |
summary += f"Sequence: {three_letter}\n"
|
| 879 |
summary += f"One-letter code: {one_letter}\n"
|
| 880 |
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
|
|
|
|
|
|
|
|
|
|
| 881 |
|
| 882 |
if structure_files:
|
| 883 |
summary += "\n3D Structures Generated:\n"
|
|
|
|
| 885 |
summary += f"- {os.path.basename(filepath)}\n"
|
| 886 |
|
| 887 |
#return summary, img_cyclic, img_linear, structure_files if structure_files else None
|
| 888 |
+
return summary, img_cyclic, structure_files or None
|
| 889 |
|
| 890 |
except Exception as e:
|
| 891 |
#return f"Error processing SMILES: {str(e)}", None, None, []
|
| 892 |
+
return f"Error processing SMILES: {str(e)}", None, []
|
| 893 |
# Handle file input
|
| 894 |
if file_obj is not None:
|
| 895 |
try:
|
|
|
|
| 910 |
continue
|
| 911 |
|
| 912 |
try:
|
|
|
|
| 913 |
result = analyzer.analyze_structure(smiles)
|
| 914 |
|
| 915 |
output_text += f"\nSummary for SMILES: {smiles}\n"
|
|
|
|
| 930 |
output_text or "No analysis done.",
|
| 931 |
img_cyclic if 'img_cyclic' in locals() else None,
|
| 932 |
#img_linear if 'img_linear' in locals() else None,
|
| 933 |
+
structure_files if structure_files else []
|
| 934 |
)
|
| 935 |
|
| 936 |
iface = gr.Interface(
|
|
|
|
| 940 |
label="Enter SMILES string",
|
| 941 |
placeholder="Enter SMILES notation of peptide...",
|
| 942 |
lines=2
|
| 943 |
+
),
|
| 944 |
+
gr.File(
|
| 945 |
+
label="Or upload a text file with SMILES",
|
| 946 |
+
file_types=[".txt"]
|
| 947 |
+
),
|
| 948 |
+
gr.Checkbox(
|
| 949 |
+
label="Show show segmentation details",
|
| 950 |
+
value=False
|
| 951 |
+
),
|
| 952 |
+
gr.Checkbox(
|
| 953 |
+
label="Generate 3D structure (sdf file format)",
|
| 954 |
+
value=False
|
| 955 |
+
),
|
| 956 |
+
gr.Checkbox(
|
| 957 |
+
label="Use UFF optimization (may take long)",
|
| 958 |
+
value=False
|
| 959 |
+
)
|
| 960 |
+
],
|
| 961 |
outputs=[
|
| 962 |
gr.Textbox(
|
| 963 |
label="Analysis Results",
|
|
|
|
| 967 |
label="2D Structure with Annotations",
|
| 968 |
type="pil"
|
| 969 |
),
|
| 970 |
+
gr.File(
|
| 971 |
+
label="3D Structure Files",
|
| 972 |
+
file_count="multiple"
|
| 973 |
+
)
|
| 974 |
],
|
| 975 |
title="Peptide Structure Analyzer and Visualizer",
|
| 976 |
description='''
|
|
|
|
| 999 |
)
|
| 1000 |
|
| 1001 |
if __name__ == "__main__":
|
| 1002 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|