Spaces:
Running
Running
Commit
·
d7b6536
1
Parent(s):
84bbd6a
add uaa and sdf
Browse files
app.py
CHANGED
|
@@ -19,11 +19,19 @@ class PeptideAnalyzer:
|
|
| 19 |
self.bond_patterns = [
|
| 20 |
(r'OC\(=O\)', 'ester'), # Ester bond
|
| 21 |
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
|
| 22 |
-
(r'N[
|
| 23 |
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
|
| 24 |
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
|
| 25 |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
| 26 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def is_peptide(self, smiles):
|
| 29 |
"""Check if the SMILES represents a peptide structure"""
|
|
@@ -44,47 +52,25 @@ class PeptideAnalyzer:
|
|
| 44 |
return False
|
| 45 |
|
| 46 |
def is_cyclic(self, smiles):
|
| 47 |
-
"""
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
number = match.group(0)[1]
|
| 55 |
-
if number not in aromatic_cycles:
|
| 56 |
-
aromatic_cycles.append(str(number))
|
| 57 |
-
|
| 58 |
-
# Find potential cycle numbers and their contexts
|
| 59 |
-
cycle_closures = []
|
| 60 |
-
|
| 61 |
-
# Look for cycle starts and corresponding ends
|
| 62 |
-
cycle_patterns = [
|
| 63 |
-
# Pattern pairs (start, end)
|
| 64 |
-
(r'[^\d](\d)[A-Z@]', r'C\1=O$'), # Classic C=O ending
|
| 65 |
-
(r'[^\d](\d)[A-Z@]', r'N\1C\(=O\)'), # N1C(=O) pattern
|
| 66 |
-
(r'[^\d](\d)[A-Z@]', r'N\1C$'), # Simple N1C ending
|
| 67 |
-
(r'[^\d](\d)C\(=O\)', r'N\1[A-Z]'), # Reverse connection
|
| 68 |
-
(r'H(\d)', r'N\1C'), # H1...N1C pattern
|
| 69 |
-
(r'[^\d](\d)(?:C|N|O)', r'(?:C|N)\1(?:\(|$)'), # Generic cycle closure
|
| 70 |
-
]
|
| 71 |
-
|
| 72 |
-
for start_pat, end_pat in cycle_patterns:
|
| 73 |
-
start_matches = re.finditer(start_pat, smiles)
|
| 74 |
-
for start_match in start_matches:
|
| 75 |
-
number = start_match.group(1)
|
| 76 |
-
if number not in aromatic_cycles: # Skip aromatic ring numbers
|
| 77 |
-
# Look for corresponding end pattern
|
| 78 |
-
end_match = re.search(end_pat.replace('\\1', number), smiles)
|
| 79 |
-
if end_match and end_match.start() > start_match.start():
|
| 80 |
-
cycle_closures.append(number)
|
| 81 |
-
break
|
| 82 |
|
| 83 |
-
#
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
|
|
|
| 87 |
|
|
|
|
| 88 |
return is_cyclic, peptide_cycles, aromatic_cycles
|
| 89 |
|
| 90 |
def split_on_bonds(self, smiles):
|
|
@@ -158,17 +144,353 @@ class PeptideAnalyzer:
|
|
| 158 |
|
| 159 |
return segments
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
def identify_residue(self, segment):
|
| 162 |
"""Identify residue with Pro reconstruction"""
|
| 163 |
-
|
|
|
|
| 164 |
mods = self.get_modifications(segment)
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content:
|
| 174 |
return 'Nle', mods
|
|
@@ -215,34 +537,39 @@ class PeptideAnalyzer:
|
|
| 215 |
return 'Leu', mods
|
| 216 |
if '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content:
|
| 217 |
return 'Leu', mods
|
| 218 |
-
|
| 219 |
-
if ('C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content) and 'CC(C)C' not in content:
|
| 220 |
-
return 'Ile', mods
|
| 221 |
-
|
| 222 |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
|
| 223 |
return 'Thr', mods
|
| 224 |
|
| 225 |
if '[C@H](Cc2ccccc2)' in content or '[C@@H](Cc2ccccc2)' in content:
|
| 226 |
return 'Phe', mods
|
| 227 |
|
| 228 |
-
if '[C@H](C(C)C)' in content or
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
| 230 |
return 'Val', mods
|
| 231 |
|
| 232 |
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content:
|
| 233 |
return 'O-tBu', mods
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
| 236 |
-
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O']):
|
| 237 |
return 'Ala', mods
|
| 238 |
|
| 239 |
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain
|
| 240 |
-
if ('
|
| 241 |
return 'Tyr', mods
|
| 242 |
-
|
| 243 |
-
# Tryptophan (Trp) - Indole side chain
|
| 244 |
-
if ('Cc2c[nH]c3ccccc23' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 245 |
-
return 'Trp', mods
|
| 246 |
|
| 247 |
# Serine (Ser) - Hydroxymethyl side chain
|
| 248 |
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
|
@@ -250,7 +577,7 @@ class PeptideAnalyzer:
|
|
| 250 |
return 'Ser', mods
|
| 251 |
|
| 252 |
# Threonine (Thr) - 1-hydroxyethyl side chain
|
| 253 |
-
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
|
| 254 |
return 'Thr', mods
|
| 255 |
|
| 256 |
# Cysteine (Cys) - Thiol side chain
|
|
@@ -277,10 +604,6 @@ class PeptideAnalyzer:
|
|
| 277 |
if ('CCC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 278 |
return 'Glu', mods
|
| 279 |
|
| 280 |
-
# Lysine (Lys) - 4-aminobutyl side chain
|
| 281 |
-
if ('C[C@H](CCCCN)' in content or 'C[C@@H](CCCCN)' in content):
|
| 282 |
-
return 'Lys', mods
|
| 283 |
-
|
| 284 |
# Arginine (Arg) - 3-guanidinopropyl side chain
|
| 285 |
if ('CCCNC(=N)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 286 |
return 'Arg', mods
|
|
@@ -302,7 +625,7 @@ class PeptideAnalyzer:
|
|
| 302 |
return mods
|
| 303 |
|
| 304 |
def analyze_structure(self, smiles):
|
| 305 |
-
"""Main analysis function"""
|
| 306 |
print("\nAnalyzing structure:", smiles)
|
| 307 |
|
| 308 |
# Split into segments
|
|
@@ -328,11 +651,25 @@ class PeptideAnalyzer:
|
|
| 328 |
print(f"Warning: Could not identify residue in segment: {segment['content']}")
|
| 329 |
|
| 330 |
# Check if cyclic
|
| 331 |
-
is_cyclic
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
-
print(f"\nFinal sequence: {
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
"""
|
| 338 |
def annotate_cyclic_structure(mol, sequence):
|
|
@@ -586,9 +923,119 @@ def create_enhanced_linear_viz(sequence, smiles):
|
|
| 586 |
plt.tight_layout()
|
| 587 |
return fig
|
| 588 |
|
| 589 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
"""Process input and create visualizations using PeptideAnalyzer"""
|
| 591 |
analyzer = PeptideAnalyzer()
|
|
|
|
| 592 |
|
| 593 |
# Handle direct SMILES input
|
| 594 |
if smiles_input:
|
|
@@ -597,13 +1044,32 @@ def process_input(smiles_input=None, file_obj=None, show_linear=False, show_segm
|
|
| 597 |
# First check if it's a peptide using analyzer's method
|
| 598 |
if not analyzer.is_peptide(smiles):
|
| 599 |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
|
| 600 |
-
|
| 601 |
try:
|
| 602 |
# Create molecule
|
| 603 |
mol = Chem.MolFromSmiles(smiles)
|
| 604 |
if mol is None:
|
| 605 |
return "Error: Invalid SMILES notation.", None, None
|
| 606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
# Use analyzer to get sequence
|
| 608 |
segments = analyzer.split_on_bonds(smiles)
|
| 609 |
|
|
@@ -666,7 +1132,7 @@ def process_input(smiles_input=None, file_obj=None, show_linear=False, show_segm
|
|
| 666 |
summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
|
| 667 |
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
|
| 668 |
|
| 669 |
-
return summary + output_text, img_cyclic, img_linear
|
| 670 |
|
| 671 |
except Exception as e:
|
| 672 |
return f"Error processing SMILES: {str(e)}", None, None
|
|
@@ -757,6 +1223,14 @@ iface = gr.Interface(
|
|
| 757 |
gr.Checkbox(
|
| 758 |
label="Show segment details",
|
| 759 |
value=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 760 |
)
|
| 761 |
],
|
| 762 |
outputs=[
|
|
@@ -781,6 +1255,7 @@ iface = gr.Interface(
|
|
| 781 |
3. Parses the amino acid sequence
|
| 782 |
4. Creates 2D structure visualization with residue annotations
|
| 783 |
5. Optional linear representation
|
|
|
|
| 784 |
|
| 785 |
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
|
| 786 |
|
|
|
|
| 19 |
self.bond_patterns = [
|
| 20 |
(r'OC\(=O\)', 'ester'), # Ester bond
|
| 21 |
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
|
| 22 |
+
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond
|
| 23 |
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
|
| 24 |
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
|
| 25 |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
| 26 |
]
|
| 27 |
+
# Three to one letter code mapping
|
| 28 |
+
self.three_to_one = {
|
| 29 |
+
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E',
|
| 30 |
+
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I',
|
| 31 |
+
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N',
|
| 32 |
+
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S',
|
| 33 |
+
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y'
|
| 34 |
+
}
|
| 35 |
|
| 36 |
def is_peptide(self, smiles):
|
| 37 |
"""Check if the SMILES represents a peptide structure"""
|
|
|
|
| 52 |
return False
|
| 53 |
|
| 54 |
def is_cyclic(self, smiles):
|
| 55 |
+
"""Improved cyclic peptide detection"""
|
| 56 |
+
# Check for C-terminal carboxyl
|
| 57 |
+
if smiles.endswith('C(=O)O'):
|
| 58 |
+
return False, [], []
|
| 59 |
+
|
| 60 |
+
# Find all numbers used in ring closures
|
| 61 |
+
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# Find aromatic ring numbers
|
| 64 |
+
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
|
| 65 |
+
aromatic_cycles = []
|
| 66 |
+
for match in aromatic_matches:
|
| 67 |
+
numbers = re.findall(r'[0-9]', match)
|
| 68 |
+
aromatic_cycles.extend(numbers)
|
| 69 |
|
| 70 |
+
# Numbers that aren't part of aromatic rings are peptide cycles
|
| 71 |
+
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
|
| 72 |
|
| 73 |
+
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
|
| 74 |
return is_cyclic, peptide_cycles, aromatic_cycles
|
| 75 |
|
| 76 |
def split_on_bonds(self, smiles):
|
|
|
|
| 144 |
|
| 145 |
return segments
|
| 146 |
|
| 147 |
+
def clean_terminal_carboxyl(self, segment):
|
| 148 |
+
"""Remove C-terminal carboxyl only if it's the true terminus"""
|
| 149 |
+
content = segment['content']
|
| 150 |
+
|
| 151 |
+
# Only clean if:
|
| 152 |
+
# 1. Contains C(=O)O
|
| 153 |
+
# 2. No bond_after exists (meaning it's the last segment)
|
| 154 |
+
# 3. C(=O)O is at the end of the content
|
| 155 |
+
if 'C(=O)O' in content and not segment.get('bond_after'):
|
| 156 |
+
print('recognized?')
|
| 157 |
+
# Remove C(=O)O pattern regardless of position
|
| 158 |
+
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
|
| 159 |
+
# Remove any leftover empty parentheses
|
| 160 |
+
cleaned = re.sub(r'\(\)', '', cleaned)
|
| 161 |
+
print(cleaned)
|
| 162 |
+
return cleaned
|
| 163 |
+
return content
|
| 164 |
+
|
| 165 |
def identify_residue(self, segment):
|
| 166 |
"""Identify residue with Pro reconstruction"""
|
| 167 |
+
# Only clean terminal carboxyl if this is the last segment
|
| 168 |
+
content = self.clean_terminal_carboxyl(segment)
|
| 169 |
mods = self.get_modifications(segment)
|
| 170 |
|
| 171 |
+
# UAA pattern matching section - before regular residues
|
| 172 |
+
# Phenylglycine and derivatives
|
| 173 |
+
if 'c1ccccc1' in content:
|
| 174 |
+
if '[C@@H](c1ccccc1)' in content or '[C@H](c1ccccc1)' in content:
|
| 175 |
+
return '4', mods # Base phenylglycine
|
| 176 |
+
|
| 177 |
+
# 4-substituted phenylalanines
|
| 178 |
+
if 'Cc1ccc' in content:
|
| 179 |
+
if 'OMe' in content or 'OCc1ccc' in content:
|
| 180 |
+
return '0A1', mods # 4-methoxy-Phenylalanine
|
| 181 |
+
elif 'Clc1ccc' in content:
|
| 182 |
+
return '200', mods # 4-chloro-Phenylalanine
|
| 183 |
+
elif 'Brc1ccc' in content:
|
| 184 |
+
return '4BF', mods # 4-Bromo-phenylalanine
|
| 185 |
+
elif 'C#Nc1ccc' in content:
|
| 186 |
+
return '4CF', mods # 4-cyano-phenylalanine
|
| 187 |
+
elif 'Ic1ccc' in content:
|
| 188 |
+
return 'PHI', mods # 4-Iodo-phenylalanine
|
| 189 |
+
elif 'Fc1ccc' in content:
|
| 190 |
+
return 'PFF', mods # 4-Fluoro-phenylalanine
|
| 191 |
+
|
| 192 |
+
# Modified tryptophans
|
| 193 |
+
if 'c[nH]c2' in content:
|
| 194 |
+
if 'Oc2cccc2' in content:
|
| 195 |
+
return '0AF', mods # 7-hydroxy-tryptophan
|
| 196 |
+
elif 'Fc2cccc2' in content:
|
| 197 |
+
return '4FW', mods # 4-fluoro-tryptophan
|
| 198 |
+
elif 'Clc2cccc2' in content:
|
| 199 |
+
return '6CW', mods # 6-chloro-tryptophan
|
| 200 |
+
elif 'Brc2cccc2' in content:
|
| 201 |
+
return 'BTR', mods # 6-bromo-tryptophan
|
| 202 |
+
elif 'COc2cccc2' in content:
|
| 203 |
+
return 'MOT5', mods # 5-Methoxy-tryptophan
|
| 204 |
+
elif 'Cc2cccc2' in content:
|
| 205 |
+
return 'MTR5', mods # 5-Methyl-tryptophan
|
| 206 |
+
|
| 207 |
+
# Special amino acids
|
| 208 |
+
if 'CC(C)(C)[C@@H]' in content or 'CC(C)(C)[C@H]' in content:
|
| 209 |
+
return 'BUG', mods # Tertleucine
|
| 210 |
+
|
| 211 |
+
if 'CCCNC(=N)N' in content:
|
| 212 |
+
return 'CIR', mods # Citrulline
|
| 213 |
+
|
| 214 |
+
if '[SeH]' in content:
|
| 215 |
+
return 'CSE', mods # Selenocysteine
|
| 216 |
+
|
| 217 |
+
if '[NH3]CC[C@@H]' in content or '[NH3]CC[C@H]' in content:
|
| 218 |
+
return 'DAB', mods # Diaminobutyric acid
|
| 219 |
+
|
| 220 |
+
if 'C1CCCCC1' in content:
|
| 221 |
+
if 'C1CCCCC1[C@@H]' in content or 'C1CCCCC1[C@H]' in content:
|
| 222 |
+
return 'CHG', mods # Cyclohexylglycine
|
| 223 |
+
elif 'C1CCCCC1C[C@@H]' in content or 'C1CCCCC1C[C@H]' in content:
|
| 224 |
+
return 'ALC', mods # 3-cyclohexyl-alanine
|
| 225 |
+
|
| 226 |
+
# Naphthalene derivatives
|
| 227 |
+
if 'c1cccc2c1cccc2' in content:
|
| 228 |
+
if 'c1cccc2c1cccc2[C@@H]' in content or 'c1cccc2c1cccc2[C@H]' in content:
|
| 229 |
+
return 'NAL', mods # 2-Naphthyl-alanine
|
| 230 |
+
|
| 231 |
+
# Heteroaromatic derivatives
|
| 232 |
+
if 'c1cncc' in content:
|
| 233 |
+
return 'PYR4', mods # 3-(4-Pyridyl)-alanine
|
| 234 |
+
if 'c1cscc' in content:
|
| 235 |
+
return 'THA3', mods # 3-(3-thienyl)-alanine
|
| 236 |
+
if 'c1nnc' in content:
|
| 237 |
+
return 'TRZ4', mods # 3-(1,2,4-Triazol-1-yl)-alanine
|
| 238 |
+
|
| 239 |
+
# Modified serines and threonines
|
| 240 |
+
if 'OP(O)(O)O' in content:
|
| 241 |
+
if '[C@@H](COP' in content or '[C@H](COP' in content:
|
| 242 |
+
return 'SEP', mods # phosphoserine
|
| 243 |
+
elif '[C@@H](OP' in content or '[C@H](OP' in content:
|
| 244 |
+
return 'TPO', mods # phosphothreonine
|
| 245 |
+
|
| 246 |
+
# Specialized ring systems
|
| 247 |
+
if 'c1c2ccccc2cc2c1cccc2' in content:
|
| 248 |
+
return 'ANTH', mods # 3-(9-anthryl)-alanine
|
| 249 |
+
if 'c1csc2c1cccc2' in content:
|
| 250 |
+
return 'BTH3', mods # 3-(3-benzothienyl)-alanine
|
| 251 |
+
if '[C@]12C[C@H]3C[C@@H](C2)C[C@@H](C1)C3' in content:
|
| 252 |
+
return 'ADAM', mods # Adamanthane
|
| 253 |
+
|
| 254 |
+
# Fluorinated derivatives
|
| 255 |
+
if 'FC(F)(F)' in content:
|
| 256 |
+
if 'CC(F)(F)F' in content:
|
| 257 |
+
return 'FLA', mods # Trifluoro-alanine
|
| 258 |
+
if 'C(F)(F)F)c1' in content:
|
| 259 |
+
if 'c1ccccc1C(F)(F)F' in content:
|
| 260 |
+
return 'TFG2', mods # 2-(Trifluoromethyl)-phenylglycine
|
| 261 |
+
if 'c1cccc(c1)C(F)(F)F' in content:
|
| 262 |
+
return 'TFG3', mods # 3-(Trifluoromethyl)-phenylglycine
|
| 263 |
+
if 'c1ccc(cc1)C(F)(F)F' in content:
|
| 264 |
+
return 'TFG4', mods # 4-(Trifluoromethyl)-phenylglycine
|
| 265 |
+
|
| 266 |
+
# Multiple halogen patterns
|
| 267 |
+
if 'F' in content and 'c1' in content:
|
| 268 |
+
if 'c1ccc(c(c1)F)F' in content:
|
| 269 |
+
return 'F2F', mods # 3,4-Difluoro-phenylalanine
|
| 270 |
+
if 'cc(F)cc(c1)F' in content:
|
| 271 |
+
return 'WFP', mods # 3,5-Difluoro-phenylalanine
|
| 272 |
+
if 'Cl' in content and 'c1' in content:
|
| 273 |
+
if 'c1ccc(cc1Cl)Cl' in content:
|
| 274 |
+
return 'CP24', mods # 2,4-dichloro-phenylalanine
|
| 275 |
+
if 'c1ccc(c(c1)Cl)Cl' in content:
|
| 276 |
+
return 'CP34', mods # 3,4-dichloro-phenylalanine
|
| 277 |
+
|
| 278 |
+
# Hydroxy and amino derivatives
|
| 279 |
+
if 'O' in content and 'c1' in content:
|
| 280 |
+
if 'c1cc(O)cc(c1)O' in content:
|
| 281 |
+
return '3FG', mods # (2s)-amino(3,5-dihydroxyphenyl)-ethanoic acid
|
| 282 |
+
if 'c1ccc(c(c1)O)O' in content:
|
| 283 |
+
return 'DAH', mods # 3,4-Dihydroxy-phenylalanine
|
| 284 |
+
|
| 285 |
+
# Cyclic amino acids
|
| 286 |
+
if 'C1CCCC1' in content:
|
| 287 |
+
return 'CPA3', mods # 3-Cyclopentyl-alanine
|
| 288 |
+
if 'C1CCCCC1' in content:
|
| 289 |
+
if 'CC1CCCCC1' in content:
|
| 290 |
+
return 'ALC', mods # 3-cyclohexyl-alanine
|
| 291 |
+
else:
|
| 292 |
+
return 'CHG', mods # Cyclohexylglycine
|
| 293 |
+
|
| 294 |
+
# Chain-length variants
|
| 295 |
+
if 'CCC[C@@H]' in content or 'CCC[C@H]' in content:
|
| 296 |
+
return 'NLE', mods # Norleucine
|
| 297 |
+
if 'CC[C@@H]' in content or 'CC[C@H]' in content:
|
| 298 |
+
if not any(x in content for x in ['CC(C)', 'COC', 'CN(']):
|
| 299 |
+
return 'ABA', mods # 2-Aminobutyric acid
|
| 300 |
+
|
| 301 |
+
# Modified histidines
|
| 302 |
+
if 'c1cnc' in content:
|
| 303 |
+
if '[C@@H]1CN[C@@H](N1)F' in content:
|
| 304 |
+
return '2HF', mods # 2-fluoro-l-histidine
|
| 305 |
+
if 'c1cnc([nH]1)F' in content:
|
| 306 |
+
return '2HF1', mods # 2-fluoro-l-histidine variant
|
| 307 |
+
if 'c1c[nH]c(n1)F' in content:
|
| 308 |
+
return '2HF2', mods # 2-fluoro-l-histidine variant
|
| 309 |
+
|
| 310 |
+
# Sulfur and selenium containing
|
| 311 |
+
if '[SeH]' in content:
|
| 312 |
+
return 'CSE', mods # Selenocysteine
|
| 313 |
+
if 'S' in content:
|
| 314 |
+
if 'CSCc1ccccc1' in content:
|
| 315 |
+
return 'BCS', mods # benzylcysteine
|
| 316 |
+
if 'CCSC' in content:
|
| 317 |
+
return 'ESC', mods # Ethionine
|
| 318 |
+
if 'CCS' in content:
|
| 319 |
+
return 'HCS', mods # homocysteine
|
| 320 |
+
|
| 321 |
+
# Additional modifications
|
| 322 |
+
if 'CN=[N]=N' in content:
|
| 323 |
+
return 'AZDA', mods # azido-alanine
|
| 324 |
+
if '[NH]=[C](=[NH2])=[NH2]' in content:
|
| 325 |
+
if 'CCC[NH]=' in content:
|
| 326 |
+
return 'AGM', mods # 5-methyl-arginine
|
| 327 |
+
if 'CC[NH]=' in content:
|
| 328 |
+
return 'GDPR', mods # 2-Amino-3-guanidinopropionic acid
|
| 329 |
+
|
| 330 |
+
if 'CCON' in content:
|
| 331 |
+
return 'CAN', mods # canaline
|
| 332 |
+
if '[C@@H]1C=C[C@@H](C=C1)' in content:
|
| 333 |
+
return 'ACZ', mods # cis-amiclenomycin
|
| 334 |
+
if 'CCC(=O)[NH3]' in content:
|
| 335 |
+
return 'ONL', mods # 5-oxo-l-norleucine
|
| 336 |
+
if 'c1ccncc1' in content:
|
| 337 |
+
return 'PYR4', mods # 3-(4-Pyridyl)-alanine
|
| 338 |
+
if 'c1ccco1' in content:
|
| 339 |
+
return 'FUA2', mods # (2-furyl)-alanine
|
| 340 |
+
|
| 341 |
+
if 'c1ccc' in content:
|
| 342 |
+
if 'c1ccc(cc1)c1ccccc1' in content:
|
| 343 |
+
return 'BIF', mods # 4,4-biphenylalanine
|
| 344 |
+
if 'c1ccc(cc1)C(=O)c1ccccc1' in content:
|
| 345 |
+
return 'PBF', mods # 4-benzoyl-phenylalanine
|
| 346 |
+
if 'c1ccc(cc1)C(C)(C)C' in content:
|
| 347 |
+
return 'TBP4', mods # 4-tert-butyl-phenylalanine
|
| 348 |
+
if 'c1ccc(cc1)[C](=[NH2])=[NH2]' in content:
|
| 349 |
+
return '0BN', mods # 4-carbamimidoyl-l-phenylalanine
|
| 350 |
+
if 'c1cccc(c1)[C](=[NH2])=[NH2]' in content:
|
| 351 |
+
return 'APM', mods # m-amidinophenyl-3-alanine
|
| 352 |
+
|
| 353 |
+
# Multiple hydroxy patterns
|
| 354 |
+
if 'O' in content:
|
| 355 |
+
if '[C@H]([C@H](C)O)O' in content:
|
| 356 |
+
return 'ILX', mods # 4,5-dihydroxy-isoleucine
|
| 357 |
+
if '[C@H]([C@@H](C)O)O' in content:
|
| 358 |
+
return 'ALO', mods # Allo-threonine
|
| 359 |
+
if '[C@H](COP(O)(O)O)' in content:
|
| 360 |
+
return 'SEP', mods # phosphoserine
|
| 361 |
+
if '[C@H]([C@@H](C)OP(O)(O)O)' in content:
|
| 362 |
+
return 'TPO', mods # phosphothreonine
|
| 363 |
+
if '[C@H](c1ccc(O)cc1)O' in content:
|
| 364 |
+
return 'OMX', mods # (betar)-beta-hydroxy-l-tyrosine
|
| 365 |
+
if '[C@H](c1ccc(c(Cl)c1)O)O' in content:
|
| 366 |
+
return 'OMY', mods # (betar)-3-chloro-beta-hydroxy-l-tyrosine
|
| 367 |
+
|
| 368 |
+
# Heterocyclic patterns
|
| 369 |
+
if 'n1' in content:
|
| 370 |
+
if 'n1cccn1' in content:
|
| 371 |
+
return 'PYZ1', mods # 3-(1-Pyrazolyl)-alanine
|
| 372 |
+
if 'n1nncn1' in content:
|
| 373 |
+
return 'TEZA', mods # 3-(2-Tetrazolyl)-alanine
|
| 374 |
+
if 'c2c(n1)cccc2' in content:
|
| 375 |
+
return 'QU32', mods # 3-(2-Quinolyl)-alanine
|
| 376 |
+
if 'c1cnc2c(c1)cccc2' in content:
|
| 377 |
+
return 'QU33', mods # 3-(3-quinolyl)-alanine
|
| 378 |
+
if 'c1ccnc2c1cccc2' in content:
|
| 379 |
+
return 'QU34', mods # 3-(4-quinolyl)-alanine
|
| 380 |
+
if 'c1ccc2c(c1)nccc2' in content:
|
| 381 |
+
return 'QU35', mods # 3-(5-Quinolyl)-alanine
|
| 382 |
+
if 'c1ccc2c(c1)cncc2' in content:
|
| 383 |
+
return 'QU36', mods # 3-(6-Quinolyl)-alanine
|
| 384 |
+
if 'c1cnc2c(n1)cccc2' in content:
|
| 385 |
+
return 'QX32', mods # 3-(2-quinoxalyl)-alanine
|
| 386 |
+
|
| 387 |
+
# Multiple nitrogen patterns
|
| 388 |
+
if 'N' in content:
|
| 389 |
+
if '[NH3]CC[C@@H]' in content:
|
| 390 |
+
return 'DAB', mods # Diaminobutyric acid
|
| 391 |
+
if '[NH3]C[C@@H]' in content:
|
| 392 |
+
return 'DPP', mods # 2,3-Diaminopropanoic acid
|
| 393 |
+
if '[NH3]CCCCCC[C@@H]' in content:
|
| 394 |
+
return 'HHK', mods # (2s)-2,8-diaminooctanoic acid
|
| 395 |
+
if 'CCC[NH]=[C](=[NH2])=[NH2]' in content:
|
| 396 |
+
return 'GBUT', mods # 2-Amino-4-guanidinobutryric acid
|
| 397 |
+
if '[NH]=[C](=S)=[NH2]' in content:
|
| 398 |
+
return 'THIC', mods # Thio-citrulline
|
| 399 |
+
|
| 400 |
+
# Chain modified amino acids
|
| 401 |
+
if 'CC' in content:
|
| 402 |
+
if 'CCCC[C@@H]' in content:
|
| 403 |
+
return 'AHP', mods # 2-Aminoheptanoic acid
|
| 404 |
+
if 'CCC([C@@H])(C)C' in content:
|
| 405 |
+
return 'I2M', mods # 3-methyl-l-alloisoleucine
|
| 406 |
+
if 'CC[C@H]([C@@H])C' in content:
|
| 407 |
+
return 'IIL', mods # Allo-Isoleucine
|
| 408 |
+
if '[C@H](CCC(C)C)' in content:
|
| 409 |
+
return 'HLEU', mods # Homoleucine
|
| 410 |
+
if '[C@@H]([C@@H](C)O)C' in content:
|
| 411 |
+
return 'HLU', mods # beta-hydroxyleucine
|
| 412 |
+
|
| 413 |
+
# Modified glutamate/aspartate patterns
|
| 414 |
+
if '[C@@H]' in content:
|
| 415 |
+
if '[C@@H](C[C@@H](F))' in content:
|
| 416 |
+
return 'FGA4', mods # 4-Fluoro-glutamic acid
|
| 417 |
+
if '[C@@H](C[C@@H](O))' in content:
|
| 418 |
+
return '3GL', mods # 4-hydroxy-glutamic-acid
|
| 419 |
+
if '[C@@H](C[C@H](C))' in content:
|
| 420 |
+
return 'LME', mods # (3r)-3-methyl-l-glutamic acid
|
| 421 |
+
if '[C@@H](CC[C@H](C))' in content:
|
| 422 |
+
return 'MEG', mods # (3s)-3-methyl-l-glutamic acid
|
| 423 |
+
|
| 424 |
+
# Sulfur and selenium modifications
|
| 425 |
+
if 'S' in content:
|
| 426 |
+
if 'SCC[C@@H]' in content:
|
| 427 |
+
return 'HSER', mods # homoserine
|
| 428 |
+
if 'SCCN' in content:
|
| 429 |
+
return 'SLZ', mods # thialysine
|
| 430 |
+
if 'SC(=O)' in content:
|
| 431 |
+
return 'CSA', mods # s-acetonylcysteine
|
| 432 |
+
if '[S@@](=O)' in content:
|
| 433 |
+
return 'SME', mods # Methionine sulfoxide
|
| 434 |
+
if 'S(=O)(=O)' in content:
|
| 435 |
+
return 'OMT', mods # Methionine sulfone
|
| 436 |
+
|
| 437 |
+
# Double bond containing
|
| 438 |
+
if 'C=' in content:
|
| 439 |
+
if 'C=C[C@@H]' in content:
|
| 440 |
+
return '2AG', mods # 2-Allyl-glycine
|
| 441 |
+
if 'C=C[C@@H]' in content:
|
| 442 |
+
return 'LVG', mods # vinylglycine
|
| 443 |
+
if 'C=Cc1ccccc1' in content:
|
| 444 |
+
return 'STYA', mods # Styrylalanine
|
| 445 |
+
|
| 446 |
+
# Special cases
|
| 447 |
+
if '[C@@H]1Cc2c(C1)cccc2' in content:
|
| 448 |
+
return 'IGL', mods # alpha-amino-2-indanacetic acid
|
| 449 |
+
if '[C](=[C](=O)=O)=O' in content:
|
| 450 |
+
return '26P', mods # 2-amino-6-oxopimelic acid
|
| 451 |
+
if '[C](=[C](=O)=O)=C' in content:
|
| 452 |
+
return '2NP', mods # l-2-amino-6-methylene-pimelic acid
|
| 453 |
+
if 'c2cnc[nH]2' in content:
|
| 454 |
+
return 'HIS', mods # histidine core
|
| 455 |
+
if 'c1cccc2c1cc(O)cc2' in content:
|
| 456 |
+
return 'NAO1', mods # 5-hydroxy-1-naphthalene
|
| 457 |
+
if 'c1ccc2c(c1)cc(O)cc2' in content:
|
| 458 |
+
return 'NAO2', mods # 6-hydroxy-2-naphthalene
|
| 459 |
+
|
| 460 |
+
# Proline (P) - flexible ring numbers
|
| 461 |
+
if any([
|
| 462 |
+
# Check for any ring number in bond patterns
|
| 463 |
+
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
|
| 464 |
+
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 465 |
+
for n in '123456789'
|
| 466 |
+
]) or any([
|
| 467 |
+
# Check ending patterns with any ring number
|
| 468 |
+
(f'CCCN{n}' in content and content.endswith('=O') and
|
| 469 |
+
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 470 |
+
for n in '123456789'
|
| 471 |
+
]) or any([
|
| 472 |
+
# Handle CCC[C@H]n patterns
|
| 473 |
+
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 474 |
+
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 475 |
+
# N-terminal Pro with any ring number
|
| 476 |
+
(f'N{n}CCC[C@H]{n}' in content) or
|
| 477 |
+
(f'N{n}CCC[C@@H]{n}' in content)
|
| 478 |
+
for n in '123456789'
|
| 479 |
+
]):
|
| 480 |
+
return 'Pro', mods
|
| 481 |
+
|
| 482 |
+
# Tryptophan (W) - more specific indole pattern
|
| 483 |
+
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
|
| 484 |
+
'c[nH]c' in content.replace(' ', ''):
|
| 485 |
+
return 'Trp', mods
|
| 486 |
+
|
| 487 |
+
# Lysine (K) - both patterns
|
| 488 |
+
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
|
| 489 |
+
return 'Lys', mods
|
| 490 |
+
|
| 491 |
+
# Arginine (R) - both patterns
|
| 492 |
+
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
|
| 493 |
+
return 'Arg', mods
|
| 494 |
|
| 495 |
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content:
|
| 496 |
return 'Nle', mods
|
|
|
|
| 537 |
return 'Leu', mods
|
| 538 |
if '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content:
|
| 539 |
return 'Leu', mods
|
| 540 |
+
|
|
|
|
|
|
|
|
|
|
| 541 |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
|
| 542 |
return 'Thr', mods
|
| 543 |
|
| 544 |
if '[C@H](Cc2ccccc2)' in content or '[C@@H](Cc2ccccc2)' in content:
|
| 545 |
return 'Phe', mods
|
| 546 |
|
| 547 |
+
if ('[C@H](C(C)C)' in content or # With outer parentheses
|
| 548 |
+
'[C@@H](C(C)C)' in content or # With outer parentheses
|
| 549 |
+
'[C@H]C(C)C' in content or # Without outer parentheses
|
| 550 |
+
'[C@@H]C(C)C' in content): # Without outer parentheses
|
| 551 |
+
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]']): # Still check not Leu
|
| 552 |
return 'Val', mods
|
| 553 |
|
| 554 |
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content:
|
| 555 |
return 'O-tBu', mods
|
| 556 |
|
| 557 |
+
if any([
|
| 558 |
+
'CC[C@H](C)' in content,
|
| 559 |
+
'CC[C@@H](C)' in content,
|
| 560 |
+
'C(C)C[C@H]' in content and 'CC(C)C' not in content,
|
| 561 |
+
'C(C)C[C@@H]' in content and 'CC(C)C' not in content
|
| 562 |
+
]):
|
| 563 |
+
return 'Ile', mods
|
| 564 |
+
|
| 565 |
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
| 566 |
+
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
|
| 567 |
return 'Ala', mods
|
| 568 |
|
| 569 |
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain
|
| 570 |
+
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
|
| 571 |
return 'Tyr', mods
|
| 572 |
+
|
|
|
|
|
|
|
|
|
|
| 573 |
|
| 574 |
# Serine (Ser) - Hydroxymethyl side chain
|
| 575 |
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
|
|
|
| 577 |
return 'Ser', mods
|
| 578 |
|
| 579 |
# Threonine (Thr) - 1-hydroxyethyl side chain
|
| 580 |
+
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H](C)O' in content or '[C@H](C)O' in content:
|
| 581 |
return 'Thr', mods
|
| 582 |
|
| 583 |
# Cysteine (Cys) - Thiol side chain
|
|
|
|
| 604 |
if ('CCC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 605 |
return 'Glu', mods
|
| 606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
# Arginine (Arg) - 3-guanidinopropyl side chain
|
| 608 |
if ('CCCNC(=N)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 609 |
return 'Arg', mods
|
|
|
|
| 625 |
return mods
|
| 626 |
|
| 627 |
def analyze_structure(self, smiles):
|
| 628 |
+
"""Main analysis function with debug output"""
|
| 629 |
print("\nAnalyzing structure:", smiles)
|
| 630 |
|
| 631 |
# Split into segments
|
|
|
|
| 651 |
print(f"Warning: Could not identify residue in segment: {segment['content']}")
|
| 652 |
|
| 653 |
# Check if cyclic
|
| 654 |
+
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
|
| 655 |
+
three_letter = '-'.join(sequence)
|
| 656 |
+
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
|
| 657 |
+
|
| 658 |
+
if is_cyclic:
|
| 659 |
+
three_letter = f"cyclo({three_letter})"
|
| 660 |
+
one_letter = f"cyclo({one_letter})"
|
| 661 |
|
| 662 |
+
print(f"\nFinal sequence: {three_letter}")
|
| 663 |
+
print(f"One-letter code: {one_letter}")
|
| 664 |
+
print(f"Is cyclic: {is_cyclic}")
|
| 665 |
+
#print(f"Peptide cycles: {peptide_cycles}")
|
| 666 |
+
#print(f"Aromatic cycles: {aromatic_cycles}")
|
| 667 |
+
|
| 668 |
+
return {
|
| 669 |
+
'three_letter': three_letter,
|
| 670 |
+
'one_letter': one_letter,
|
| 671 |
+
'is_cyclic': is_cyclic
|
| 672 |
+
}
|
| 673 |
|
| 674 |
"""
|
| 675 |
def annotate_cyclic_structure(mol, sequence):
|
|
|
|
| 923 |
plt.tight_layout()
|
| 924 |
return fig
|
| 925 |
|
| 926 |
+
class PeptideStructureGenerator:
|
| 927 |
+
"""A class to generate 3D structures of peptides using different embedding methods"""
|
| 928 |
+
|
| 929 |
+
@staticmethod
|
| 930 |
+
def prepare_molecule(smiles):
|
| 931 |
+
"""Prepare molecule with proper hydrogen handling"""
|
| 932 |
+
mol = Chem.MolFromSmiles(smiles, sanitize=False)
|
| 933 |
+
if mol is None:
|
| 934 |
+
raise ValueError("Failed to create molecule from SMILES")
|
| 935 |
+
|
| 936 |
+
# Calculate valence for each atom
|
| 937 |
+
for atom in mol.GetAtoms():
|
| 938 |
+
atom.UpdatePropertyCache(strict=False)
|
| 939 |
+
|
| 940 |
+
# Sanitize with reduced requirements
|
| 941 |
+
Chem.SanitizeMol(mol,
|
| 942 |
+
sanitizeOps=Chem.SANITIZE_FINDRADICALS|
|
| 943 |
+
Chem.SANITIZE_KEKULIZE|
|
| 944 |
+
Chem.SANITIZE_SETAROMATICITY|
|
| 945 |
+
Chem.SANITIZE_SETCONJUGATION|
|
| 946 |
+
Chem.SANITIZE_SETHYBRIDIZATION|
|
| 947 |
+
Chem.SANITIZE_CLEANUPCHIRALITY)
|
| 948 |
+
|
| 949 |
+
mol = Chem.AddHs(mol)
|
| 950 |
+
return mol
|
| 951 |
+
|
| 952 |
+
@staticmethod
|
| 953 |
+
def get_etkdg_params(attempt=0):
|
| 954 |
+
"""Get ETKDG parameters with optional modifications based on attempt number"""
|
| 955 |
+
params = AllChem.ETKDGv3()
|
| 956 |
+
params.randomSeed = -1
|
| 957 |
+
params.maxIterations = 200
|
| 958 |
+
params.numThreads = 4 # Reduced for web interface
|
| 959 |
+
params.useBasicKnowledge = True
|
| 960 |
+
params.enforceChirality = True
|
| 961 |
+
params.useExpTorsionAnglePrefs = True
|
| 962 |
+
params.useSmallRingTorsions = True
|
| 963 |
+
params.useMacrocycleTorsions = True
|
| 964 |
+
params.ETversion = 2
|
| 965 |
+
params.pruneRmsThresh = -1
|
| 966 |
+
params.embedRmsThresh = 0.5
|
| 967 |
+
|
| 968 |
+
if attempt > 10:
|
| 969 |
+
params.bondLength = 1.5 + (attempt - 10) * 0.02
|
| 970 |
+
params.useExpTorsionAnglePrefs = False
|
| 971 |
+
|
| 972 |
+
return params
|
| 973 |
+
|
| 974 |
+
def generate_structure_etkdg(self, smiles, max_attempts=20):
|
| 975 |
+
"""Generate 3D structure using ETKDG without UFF optimization"""
|
| 976 |
+
success = False
|
| 977 |
+
mol = None
|
| 978 |
+
|
| 979 |
+
for attempt in range(max_attempts):
|
| 980 |
+
try:
|
| 981 |
+
mol = self.prepare_molecule(smiles)
|
| 982 |
+
params = self.get_etkdg_params(attempt)
|
| 983 |
+
|
| 984 |
+
if AllChem.EmbedMolecule(mol, params) == 0:
|
| 985 |
+
success = True
|
| 986 |
+
break
|
| 987 |
+
except Exception as e:
|
| 988 |
+
continue
|
| 989 |
+
|
| 990 |
+
if not success:
|
| 991 |
+
raise ValueError("Failed to generate structure with ETKDG")
|
| 992 |
+
|
| 993 |
+
return mol
|
| 994 |
+
|
| 995 |
+
def generate_structure_uff(self, smiles, max_attempts=20):
|
| 996 |
+
"""Generate 3D structure using ETKDG followed by UFF optimization"""
|
| 997 |
+
best_mol = None
|
| 998 |
+
lowest_energy = float('inf')
|
| 999 |
+
|
| 1000 |
+
for attempt in range(max_attempts):
|
| 1001 |
+
try:
|
| 1002 |
+
test_mol = self.prepare_molecule(smiles)
|
| 1003 |
+
params = self.get_etkdg_params(attempt)
|
| 1004 |
+
|
| 1005 |
+
if AllChem.EmbedMolecule(test_mol, params) == 0:
|
| 1006 |
+
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000,
|
| 1007 |
+
vdwThresh=10.0, confId=0,
|
| 1008 |
+
ignoreInterfragInteractions=True)
|
| 1009 |
+
|
| 1010 |
+
if res == 0:
|
| 1011 |
+
ff = AllChem.UFFGetMoleculeForceField(test_mol)
|
| 1012 |
+
if ff:
|
| 1013 |
+
current_energy = ff.CalcEnergy()
|
| 1014 |
+
if current_energy < lowest_energy:
|
| 1015 |
+
lowest_energy = current_energy
|
| 1016 |
+
best_mol = Chem.Mol(test_mol)
|
| 1017 |
+
except Exception:
|
| 1018 |
+
continue
|
| 1019 |
+
|
| 1020 |
+
if best_mol is None:
|
| 1021 |
+
raise ValueError("Failed to generate optimized structure")
|
| 1022 |
+
|
| 1023 |
+
return best_mol
|
| 1024 |
+
|
| 1025 |
+
@staticmethod
|
| 1026 |
+
def mol_to_sdf_bytes(mol):
|
| 1027 |
+
"""Convert RDKit molecule to SDF file bytes"""
|
| 1028 |
+
sio = BytesIO()
|
| 1029 |
+
writer = Chem.SDWriter(sio)
|
| 1030 |
+
writer.write(mol)
|
| 1031 |
+
writer.close()
|
| 1032 |
+
return sio.getvalue()
|
| 1033 |
+
|
| 1034 |
+
def process_input(smiles_input=None, file_obj=None, show_linear=False,
|
| 1035 |
+
show_segment_details=False, generate_3d=False, use_uff=False):
|
| 1036 |
"""Process input and create visualizations using PeptideAnalyzer"""
|
| 1037 |
analyzer = PeptideAnalyzer()
|
| 1038 |
+
structure_files = []
|
| 1039 |
|
| 1040 |
# Handle direct SMILES input
|
| 1041 |
if smiles_input:
|
|
|
|
| 1044 |
# First check if it's a peptide using analyzer's method
|
| 1045 |
if not analyzer.is_peptide(smiles):
|
| 1046 |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
|
| 1047 |
+
|
| 1048 |
try:
|
| 1049 |
# Create molecule
|
| 1050 |
mol = Chem.MolFromSmiles(smiles)
|
| 1051 |
if mol is None:
|
| 1052 |
return "Error: Invalid SMILES notation.", None, None
|
| 1053 |
|
| 1054 |
+
# Generate 3D structures if requested
|
| 1055 |
+
if generate_3d:
|
| 1056 |
+
generator = PeptideStructureGenerator()
|
| 1057 |
+
|
| 1058 |
+
try:
|
| 1059 |
+
# Generate ETKDG structure
|
| 1060 |
+
mol_etkdg = generator.generate_structure_etkdg(smiles)
|
| 1061 |
+
etkdg_bytes = generator.mol_to_sdf_bytes(mol_etkdg)
|
| 1062 |
+
structure_files.append(("structure_etkdg.sdf", etkdg_bytes))
|
| 1063 |
+
|
| 1064 |
+
# Generate UFF structure if requested
|
| 1065 |
+
if use_uff:
|
| 1066 |
+
mol_uff = generator.generate_structure_uff(smiles)
|
| 1067 |
+
uff_bytes = generator.mol_to_sdf_bytes(mol_uff)
|
| 1068 |
+
structure_files.append(("structure_uff.sdf", uff_bytes))
|
| 1069 |
+
|
| 1070 |
+
except Exception as e:
|
| 1071 |
+
return f"Error generating 3D structures: {str(e)}", None, None, []
|
| 1072 |
+
|
| 1073 |
# Use analyzer to get sequence
|
| 1074 |
segments = analyzer.split_on_bonds(smiles)
|
| 1075 |
|
|
|
|
| 1132 |
summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
|
| 1133 |
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
|
| 1134 |
|
| 1135 |
+
return summary + output_text, img_cyclic, img_linear, structure_files
|
| 1136 |
|
| 1137 |
except Exception as e:
|
| 1138 |
return f"Error processing SMILES: {str(e)}", None, None
|
|
|
|
| 1223 |
gr.Checkbox(
|
| 1224 |
label="Show segment details",
|
| 1225 |
value=False
|
| 1226 |
+
),
|
| 1227 |
+
gr.Checkbox(
|
| 1228 |
+
label="Generate 3D structure (sdf file format)",
|
| 1229 |
+
value=False
|
| 1230 |
+
),
|
| 1231 |
+
gr.Checkbox(
|
| 1232 |
+
label="Use UFF optimization",
|
| 1233 |
+
value=False
|
| 1234 |
)
|
| 1235 |
],
|
| 1236 |
outputs=[
|
|
|
|
| 1255 |
3. Parses the amino acid sequence
|
| 1256 |
4. Creates 2D structure visualization with residue annotations
|
| 1257 |
5. Optional linear representation
|
| 1258 |
+
6. Optional 3D structure generation (ETKDG and UFF methods)
|
| 1259 |
|
| 1260 |
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
|
| 1261 |
|