Spaces:
Sleeping
Sleeping
File size: 15,033 Bytes
0be59db 2e1f4b0 0be59db 2e1f4b0 0be59db 2e1f4b0 1257348 8ee2e62 1257348 2e1f4b0 1257348 2e1f4b0 1257348 2e1f4b0 1257348 2e1f4b0 1257348 8ee2e62 2e1f4b0 36ae812 0be59db 2e1f4b0 1257348 0be59db 2e1f4b0 0be59db 2e1f4b0 0be59db 2e1f4b0 56ba7f8 2e1f4b0 56ba7f8 2e1f4b0 56ba7f8 2e1f4b0 56ba7f8 2e1f4b0 56ba7f8 2e1f4b0 0be59db 799b7ad 0be59db 56ba7f8 799b7ad 56ba7f8 0be59db 799b7ad 0be59db 799b7ad 0be59db 2a0a46a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import numpy as np
import gradio as gr
import cv2
from models.HybridGNet2IGSC import Hybrid
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
import scipy.sparse as sp
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
hybrid = None
def getDenseMask(landmarks, h, w):
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
img = np.zeros([h, w], dtype='uint8')
RL = RL.reshape(-1, 1, 2).astype('int')
LL = LL.reshape(-1, 1, 2).astype('int')
H = H.reshape(-1, 1, 2).astype('int')
img = cv2.drawContours(img, [RL], -1, 1, -1)
img = cv2.drawContours(img, [LL], -1, 1, -1)
img = cv2.drawContours(img, [H], -1, 2, -1)
return img
def getMasks(landmarks, h, w):
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
RL = RL.reshape(-1, 1, 2).astype('int')
LL = LL.reshape(-1, 1, 2).astype('int')
H = H.reshape(-1, 1, 2).astype('int')
RL_mask = np.zeros([h, w], dtype='uint8')
LL_mask = np.zeros([h, w], dtype='uint8')
H_mask = np.zeros([h, w], dtype='uint8')
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1)
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1)
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1)
return RL_mask, LL_mask, H_mask
def calculate_image_tilt(landmarks):
"""Calculate image tilt angle based on lung symmetry"""
RL = landmarks[0:44] # Right lung
LL = landmarks[44:94] # Left lung
# Find the topmost points of both lungs
rl_top_idx = np.argmin(RL[:, 1])
ll_top_idx = np.argmin(LL[:, 1])
rl_top = RL[rl_top_idx]
ll_top = LL[ll_top_idx]
# Calculate angle between the line connecting lung tops and horizontal
dx = ll_top[0] - rl_top[0]
dy = ll_top[1] - rl_top[1]
angle_rad = np.arctan2(dy, dx)
angle_deg = np.degrees(angle_rad)
return angle_deg, rl_top, ll_top
def rotate_points(points, angle_deg, center):
"""Rotate points around a center by given angle"""
angle_rad = np.radians(-angle_deg) # Negative to correct the tilt
cos_a = np.cos(angle_rad)
sin_a = np.sin(angle_rad)
# Translate to origin
translated = points - center
# Rotate
rotated = np.zeros_like(translated)
rotated[:, 0] = translated[:, 0] * cos_a - translated[:, 1] * sin_a
rotated[:, 1] = translated[:, 0] * sin_a + translated[:, 1] * cos_a
# Translate back
return rotated + center
def drawOnTop(img, landmarks, original_shape):
h, w = original_shape
output = getDenseMask(landmarks, h, w)
image = np.zeros([h, w, 3])
image[:, :, 0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
image[:, :, 1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
image[:, :, 2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
image = np.clip(image, 0, 1)
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:]
# Calculate image tilt and correct it for measurements
tilt_angle, rl_top, ll_top = calculate_image_tilt(landmarks)
image_center = np.array([w/2, h/2])
# Draw tilt reference line (green)
image = cv2.line(image, (int(rl_top[0]), int(rl_top[1])), (int(ll_top[0]), int(ll_top[1])), (0, 1, 0), 1)
# Add tilt angle text
tilt_text = f"Tilt: {tilt_angle:.1f}°"
cv2.putText(image, tilt_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 1, 0), 2)
# Correct landmarks for tilt
if abs(tilt_angle) > 2: # Only correct if tilt is significant
RL_corrected = rotate_points(RL, tilt_angle, image_center)
LL_corrected = rotate_points(LL, tilt_angle, image_center)
H_corrected = rotate_points(H, tilt_angle, image_center)
cv2.putText(image, "Tilt Corrected", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (1, 1, 0), 2)
else:
RL_corrected, LL_corrected, H_corrected = RL, LL, H
# Draw the landmarks as dots
for l in RL:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
for l in LL:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
for l in H:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1)
# Draw horizontal lines for CTR calculation using corrected landmarks
# Heart (red line) - using corrected coordinates
heart_xmin = int(np.min(H_corrected[:, 0]))
heart_xmax = int(np.max(H_corrected[:, 0]))
heart_y = int(np.mean([H_corrected[np.argmin(H_corrected[:, 0]), 1], H_corrected[np.argmax(H_corrected[:, 0]), 1]]))
image = cv2.line(image, (heart_xmin, heart_y), (heart_xmax, heart_y), (1, 0, 0), 2)
# Add vertical lines at heart endpoints to verify widest points
line_length = 30 # Length of vertical indicator lines
image = cv2.line(image, (heart_xmin, heart_y - line_length), (heart_xmin, heart_y + line_length), (1, 0, 0), 2)
image = cv2.line(image, (heart_xmax, heart_y - line_length), (heart_xmax, heart_y + line_length), (1, 0, 0), 2)
# Thorax (blue line) - using corrected coordinates
thorax_xmin = int(min(np.min(RL_corrected[:, 0]), np.min(LL_corrected[:, 0])))
thorax_xmax = int(max(np.max(RL_corrected[:, 0]), np.max(LL_corrected[:, 0])))
# Find y at leftmost and rightmost points
if np.min(RL_corrected[:, 0]) < np.min(LL_corrected[:, 0]):
thorax_ymin = RL_corrected[np.argmin(RL_corrected[:, 0]), 1]
else:
thorax_ymin = LL_corrected[np.argmin(LL_corrected[:, 0]), 1]
if np.max(RL_corrected[:, 0]) > np.max(LL_corrected[:, 0]):
thorax_ymax = RL_corrected[np.argmax(RL_corrected[:, 0]), 1]
else:
thorax_ymax = LL_corrected[np.argmax(LL_corrected[:, 0]), 1]
thorax_y = int(np.mean([thorax_ymin, thorax_ymax]))
image = cv2.line(image, (thorax_xmin, thorax_y), (thorax_xmax, thorax_y), (0, 0, 1), 2)
# Add vertical lines at thorax endpoints to verify widest points
image = cv2.line(image, (thorax_xmin, thorax_y - line_length), (thorax_xmin, thorax_y + line_length), (0, 0, 1), 2)
image = cv2.line(image, (thorax_xmax, thorax_y - line_length), (thorax_xmax, thorax_y + line_length), (0, 0, 1), 2)
# Store corrected landmarks for CTR calculation
return image, (RL_corrected, LL_corrected, H_corrected, tilt_angle)
return image
def loadModel(device):
A, AD, D, U = genMatrixesLungsHeart()
N1 = A.shape[0]
N2 = AD.shape[0]
A = sp.csc_matrix(A).tocoo()
AD = sp.csc_matrix(AD).tocoo()
D = sp.csc_matrix(D).tocoo()
U = sp.csc_matrix(U).tocoo()
D_ = [D.copy()]
U_ = [U.copy()]
config = {}
config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_))
config['latents'] = 64
config['inputsize'] = 1024
f = 32
config['filters'] = [2, f, f, f, f // 2, f // 2, f // 2]
config['skip_features'] = f
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device)))
hybrid.eval()
return hybrid
def pad_to_square(img):
h, w = img.shape[:2]
if h > w:
padw = (h - w)
auxw = padw % 2
img = np.pad(img, ((0, 0), (padw // 2, padw // 2 + auxw)), 'constant')
padh = 0
auxh = 0
else:
padh = (w - h)
auxh = padh % 2
img = np.pad(img, ((padh // 2, padh // 2 + auxh), (0, 0)), 'constant')
padw = 0
auxw = 0
return img, (padh, padw, auxh, auxw)
def preprocess(input_img):
img, padding = pad_to_square(input_img)
h, w = img.shape[:2]
if h != 1024 or w != 1024:
img = cv2.resize(img, (1024, 1024), interpolation=cv2.INTER_CUBIC)
return img, (h, w, padding)
def removePreprocess(output, info):
h, w, padding = info
if h != 1024 or w != 1024:
output = output * h
else:
output = output * 1024
padh, padw, auxh, auxw = padding
output[:, 0] = output[:, 0] - padw // 2
output[:, 1] = output[:, 1] - padh // 2
return output
def calculate_ctr(landmarks, corrected_landmarks=None):
if corrected_landmarks is not None:
RL, LL, H, tilt_angle = corrected_landmarks
else:
H = landmarks[94:]
RL = landmarks[0:44]
LL = landmarks[44:94]
tilt_angle = 0
cardiac_width = np.max(H[:, 0]) - np.min(H[:, 0])
thoracic_width = max(np.max(RL[:, 0]), np.max(LL[:, 0])) - min(np.min(RL[:, 0]), np.min(LL[:, 0]))
ctr = cardiac_width / thoracic_width if thoracic_width > 0 else 0
return round(ctr, 3), abs(tilt_angle)
def segment(input_img):
global hybrid, device
if hybrid is None:
hybrid = loadModel(device)
input_img = cv2.imread(input_img, 0) / 255.0
original_shape = input_img.shape[:2]
img, (h, w, padding) = preprocess(input_img)
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
with torch.no_grad():
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2)
output = removePreprocess(output, (h, w, padding))
output = output.astype('int')
outseg, corrected_data = drawOnTop(input_img, output, original_shape)
seg_to_save = (outseg.copy() * 255).astype('uint8')
cv2.imwrite("tmp/overlap_segmentation.png", cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR))
ctr_value, tilt_angle = calculate_ctr(output, corrected_data)
# Add tilt warning to interpretation
tilt_warning = ""
if tilt_angle > 5:
tilt_warning = f" (⚠️ Image tilted {tilt_angle:.1f}° - measurement corrected)"
elif tilt_angle > 2:
tilt_warning = f" (Image tilted {tilt_angle:.1f}° - corrected)"
if ctr_value < 0.5:
interpretation = f"Normal{tilt_warning}"
elif 0.51 <= ctr_value <= 0.55:
interpretation = f"Mild Cardiomegaly (CTR 51-55%){tilt_warning}"
elif 0.56 <= ctr_value <= 0.60:
interpretation = f"Moderate Cardiomegaly (CTR 56-60%){tilt_warning}"
elif ctr_value > 0.60:
interpretation = f"Severe Cardiomegaly (CTR > 60%){tilt_warning}"
else:
interpretation = f"Cardiomegaly{tilt_warning}"
return outseg, "tmp/overlap_segmentation.png", ctr_value, interpretation
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("""
# Chest X-ray HybridGNet Segmentation.
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
Instructions:
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
2. Click on "Segment Image".
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation.
Please check citations below.
""")
with gr.Tab("Segment Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", height=750)
with gr.Row():
clear_button = gr.Button("Clear")
image_button = gr.Button("Segment Image")
gr.Examples(inputs=image_input,
examples=['utils/example1.jpg', 'utils/example2.jpg', 'utils/example3.png',
'utils/example4.jpg'])
with gr.Column():
image_output = gr.Image(type="filepath", height=750)
with gr.Row():
ctr_output = gr.Number(label="CTR (Cardiothoracic Ratio)")
ctr_interpretation = gr.Textbox(label="Interpretation", interactive=False)
results = gr.File()
gr.Markdown("""
If you use this code, please cite:
```
@article{gaggion2022TMI,
doi = {10.1109/tmi.2022.3224660},
url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
year = 2022,
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
journal = {{IEEE} Transactions on Medical Imaging}
}
```
This model was trained following the procedure explained on:
```
@INPROCEEDINGS{gaggion2022ISBI,
author={Gaggion, Nicolás and Vakalopoulou, Maria and Milone, Diego H. and Ferrante, Enzo},
booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)},
title={Multi-Center Anatomical Segmentation with Heterogeneous Labels Via Landmark-Based Models},
year={2023},
volume={},
number={},
pages={1-5},
doi={10.1109/ISBI53787.2023.10230691}
}
```
Example images extracted from Wikipedia, released under:
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
Author: Nicolás Gaggion
Website: [ngaggion.github.io](https://ngaggion.github.io/)
""")
clear_button.click(lambda: None, None, image_input, queue=False)
clear_button.click(lambda: None, None, image_output, queue=False)
clear_button.click(lambda: None, None, ctr_output, queue=False)
clear_button.click(lambda: None, None, ctr_interpretation, queue=False)
image_button.click(segment, inputs=image_input, outputs=[image_output, results, ctr_output, ctr_interpretation], queue=False)
demo.launch() |