Spaces:
Runtime error
Runtime error
| from torch_geometric.nn.conv import MessagePassing | |
| from torch_geometric.nn.conv.cheb_conv import ChebConv | |
| from torch_geometric.nn.inits import zeros, normal | |
| # We change the default initialization from zeros to a normal distribution | |
| class ChebConv(ChebConv): | |
| def reset_parameters(self): | |
| for lin in self.lins: | |
| normal(lin, mean = 0, std = 0.1) | |
| #lin.reset_parameters() | |
| normal(self.bias, mean = 0, std = 0.1) | |
| #zeros(self.bias) | |
| # Pooling from COMA: https://github.com/pixelite1201/pytorch_coma/blob/master/layers.py | |
| class Pool(MessagePassing): | |
| def __init__(self): | |
| # source_to_target is the default value for flow, but is specified here for explicitness | |
| super(Pool, self).__init__(flow='source_to_target') | |
| def forward(self, x, pool_mat, dtype=None): | |
| pool_mat = pool_mat.transpose(0, 1) | |
| out = self.propagate(edge_index=pool_mat._indices(), x=x, norm=pool_mat._values(), size=pool_mat.size()) | |
| return out | |
| def message(self, x_j, norm): | |
| return norm.view(1, -1, 1) * x_j | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class residualBlock(nn.Module): | |
| def __init__(self, in_channels, out_channels, stride=1): | |
| """ | |
| Args: | |
| in_channels (int): Number of input channels. | |
| out_channels (int): Number of output channels. | |
| stride (int): Controls the stride. | |
| """ | |
| super(residualBlock, self).__init__() | |
| self.skip = nn.Sequential() | |
| if stride != 1 or in_channels != out_channels: | |
| self.skip = nn.Sequential( | |
| nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(out_channels, track_running_stats=False)) | |
| else: | |
| self.skip = None | |
| self.block = nn.Sequential(nn.BatchNorm2d(in_channels, track_running_stats=False), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(in_channels, out_channels, 3, padding=1), | |
| nn.BatchNorm2d(out_channels, track_running_stats=False), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(out_channels, out_channels, 3, padding=1) | |
| ) | |
| def forward(self, x): | |
| identity = x | |
| out = self.block(x) | |
| if self.skip is not None: | |
| identity = self.skip(x) | |
| out += identity | |
| out = F.relu(out) | |
| return out |