ChestX-Ray-CTR / app.py
Chayanat's picture
Test
e38108a verified
import numpy as np
import gradio as gr
import cv2
from models.HybridGNet2IGSC import Hybrid
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
import scipy.sparse as sp
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
hybrid = None
def getDenseMask(landmarks, h, w):
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
img = np.zeros([h, w], dtype='uint8')
RL = RL.reshape(-1, 1, 2).astype('int')
LL = LL.reshape(-1, 1, 2).astype('int')
H = H.reshape(-1, 1, 2).astype('int')
img = cv2.drawContours(img, [RL], -1, 1, -1)
img = cv2.drawContours(img, [LL], -1, 1, -1)
img = cv2.drawContours(img, [H], -1, 2, -1)
return img
def getMasks(landmarks, h, w):
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
RL = RL.reshape(-1, 1, 2).astype('int')
LL = LL.reshape(-1, 1, 2).astype('int')
H = H.reshape(-1, 1, 2).astype('int')
RL_mask = np.zeros([h, w], dtype='uint8')
LL_mask = np.zeros([h, w], dtype='uint8')
H_mask = np.zeros([h, w], dtype='uint8')
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1)
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1)
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1)
return RL_mask, LL_mask, H_mask
def calculate_image_tilt(landmarks):
"""Calculate image tilt angle based on lung symmetry"""
RL = landmarks[0:44] # Right lung
LL = landmarks[44:94] # Left lung
# Find the topmost points of both lungs
rl_top_idx = np.argmin(RL[:, 1])
ll_top_idx = np.argmin(LL[:, 1])
rl_top = RL[rl_top_idx]
ll_top = LL[ll_top_idx]
# Calculate angle between the line connecting lung tops and horizontal
dx = ll_top[0] - rl_top[0]
dy = ll_top[1] - rl_top[1]
angle_rad = np.arctan2(dy, dx)
angle_deg = np.degrees(angle_rad)
return angle_deg, rl_top, ll_top
def rotate_points(points, angle_deg, center):
"""Rotate points around a center by given angle"""
angle_rad = np.radians(-angle_deg) # Negative to correct the tilt
cos_a = np.cos(angle_rad)
sin_a = np.sin(angle_rad)
# Translate to origin
translated = points - center
# Rotate
rotated = np.zeros_like(translated)
rotated[:, 0] = translated[:, 0] * cos_a - translated[:, 1] * sin_a
rotated[:, 1] = translated[:, 0] * sin_a + translated[:, 1] * cos_a
# Translate back
return rotated + center
def drawOnTop(img, landmarks, original_shape):
h, w = original_shape
output = getDenseMask(landmarks, h, w)
image = np.zeros([h, w, 3])
image[:, :, 0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
image[:, :, 1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
image[:, :, 2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
image = np.clip(image, 0, 1)
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:]
# Calculate image tilt and correct it for measurements
tilt_angle, rl_top, ll_top = calculate_image_tilt(landmarks)
image_center = np.array([w/2, h/2])
# Draw tilt reference line (green)
image = cv2.line(image, (int(rl_top[0]), int(rl_top[1])), (int(ll_top[0]), int(ll_top[1])), (0, 1, 0), 1)
# Add tilt angle text
tilt_text = f"Tilt: {tilt_angle:.1f} degrees"
cv2.putText(image, tilt_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 1, 0), 2)
# Correct landmarks for tilt
if abs(tilt_angle) > 2: # Only correct if tilt is significant
RL_corrected = rotate_points(RL, tilt_angle, image_center)
LL_corrected = rotate_points(LL, tilt_angle, image_center)
H_corrected = rotate_points(H, tilt_angle, image_center)
cv2.putText(image, "Tilt Corrected", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (1, 1, 0), 2)
else:
RL_corrected, LL_corrected, H_corrected = RL, LL, H
# Draw the landmarks as dots
for l in RL:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
for l in LL:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
for l in H:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1)
# Draw measurement lines that follow the image tilt for visual accuracy
# Use corrected coordinates for accurate measurement, but draw tilted lines for visual appeal
# Heart (red line) - calculate positions from corrected coordinates
heart_xmin_corrected = np.min(H_corrected[:, 0])
heart_xmax_corrected = np.max(H_corrected[:, 0])
heart_y_corrected = np.mean([H_corrected[np.argmin(H_corrected[:, 0]), 1], H_corrected[np.argmax(H_corrected[:, 0]), 1]])
# Rotate back to match the tilted image for display
heart_points_corrected = np.array([[heart_xmin_corrected, heart_y_corrected], [heart_xmax_corrected, heart_y_corrected]])
heart_points_display = rotate_points(heart_points_corrected, -tilt_angle, image_center) # Rotate back for display
heart_start = (int(heart_points_display[0, 0]), int(heart_points_display[0, 1]))
heart_end = (int(heart_points_display[1, 0]), int(heart_points_display[1, 1]))
image = cv2.line(image, heart_start, heart_end, (1, 0, 0), 2)
# Add perpendicular lines at heart endpoints
line_length = 30
# Calculate perpendicular direction
heart_dx = heart_end[0] - heart_start[0]
heart_dy = heart_end[1] - heart_start[1]
heart_length = np.sqrt(heart_dx**2 + heart_dy**2)
if heart_length > 0:
perp_x = -heart_dy / heart_length * line_length
perp_y = heart_dx / heart_length * line_length
# Perpendicular lines at start point
image = cv2.line(image,
(int(heart_start[0] + perp_x), int(heart_start[1] + perp_y)),
(int(heart_start[0] - perp_x), int(heart_start[1] - perp_y)),
(1, 0, 0), 2)
# Perpendicular lines at end point
image = cv2.line(image,
(int(heart_end[0] + perp_x), int(heart_end[1] + perp_y)),
(int(heart_end[0] - perp_x), int(heart_end[1] - perp_y)),
(1, 0, 0), 2)
# Thorax (blue line) - calculate positions from corrected coordinates
thorax_xmin_corrected = min(np.min(RL_corrected[:, 0]), np.min(LL_corrected[:, 0]))
thorax_xmax_corrected = max(np.max(RL_corrected[:, 0]), np.max(LL_corrected[:, 0]))
# Find y at leftmost and rightmost points (corrected)
if np.min(RL_corrected[:, 0]) < np.min(LL_corrected[:, 0]):
thorax_ymin_corrected = RL_corrected[np.argmin(RL_corrected[:, 0]), 1]
else:
thorax_ymin_corrected = LL_corrected[np.argmin(LL_corrected[:, 0]), 1]
if np.max(RL_corrected[:, 0]) > np.max(LL_corrected[:, 0]):
thorax_ymax_corrected = RL_corrected[np.argmax(RL_corrected[:, 0]), 1]
else:
thorax_ymax_corrected = LL_corrected[np.argmax(LL_corrected[:, 0]), 1]
thorax_y_corrected = np.mean([thorax_ymin_corrected, thorax_ymax_corrected])
# Rotate back to match the tilted image for display
thorax_points_corrected = np.array([[thorax_xmin_corrected, thorax_y_corrected], [thorax_xmax_corrected, thorax_y_corrected]])
thorax_points_display = rotate_points(thorax_points_corrected, -tilt_angle, image_center) # Rotate back for display
thorax_start = (int(thorax_points_display[0, 0]), int(thorax_points_display[0, 1]))
thorax_end = (int(thorax_points_display[1, 0]), int(thorax_points_display[1, 1]))
image = cv2.line(image, thorax_start, thorax_end, (0, 0, 1), 2)
# Add perpendicular lines at thorax endpoints
thorax_dx = thorax_end[0] - thorax_start[0]
thorax_dy = thorax_end[1] - thorax_start[1]
thorax_length = np.sqrt(thorax_dx**2 + thorax_dy**2)
if thorax_length > 0:
perp_x = -thorax_dy / thorax_length * line_length
perp_y = thorax_dx / thorax_length * line_length
# Perpendicular lines at start point
image = cv2.line(image,
(int(thorax_start[0] + perp_x), int(thorax_start[1] + perp_y)),
(int(thorax_start[0] - perp_x), int(thorax_start[1] - perp_y)),
(0, 0, 1), 2)
# Perpendicular lines at end point
image = cv2.line(image,
(int(thorax_end[0] + perp_x), int(thorax_end[1] + perp_y)),
(int(thorax_end[0] - perp_x), int(thorax_end[1] - perp_y)),
(0, 0, 1), 2)
# Store corrected landmarks for CTR calculation
return image, (RL_corrected, LL_corrected, H_corrected, tilt_angle)
def loadModel(device):
A, AD, D, U = genMatrixesLungsHeart()
N1 = A.shape[0]
N2 = AD.shape[0]
A = sp.csc_matrix(A).tocoo()
AD = sp.csc_matrix(AD).tocoo()
D = sp.csc_matrix(D).tocoo()
U = sp.csc_matrix(U).tocoo()
D_ = [D.copy()]
U_ = [U.copy()]
config = {}
config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_))
config['latents'] = 64
config['inputsize'] = 1024
f = 32
config['filters'] = [2, f, f, f, f // 2, f // 2, f // 2]
config['skip_features'] = f
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device)))
hybrid.eval()
return hybrid
def pad_to_square(img):
h, w = img.shape[:2]
if h > w:
padw = (h - w)
auxw = padw % 2
img = np.pad(img, ((0, 0), (padw // 2, padw // 2 + auxw)), 'constant')
padh = 0
auxh = 0
else:
padh = (w - h)
auxh = padh % 2
img = np.pad(img, ((padh // 2, padh // 2 + auxh), (0, 0)), 'constant')
padw = 0
auxw = 0
return img, (padh, padw, auxh, auxw)
def preprocess(input_img):
img, padding = pad_to_square(input_img)
h, w = img.shape[:2]
if h != 1024 or w != 1024:
img = cv2.resize(img, (1024, 1024), interpolation=cv2.INTER_CUBIC)
return img, (h, w, padding)
def removePreprocess(output, info):
h, w, padding = info
if h != 1024 or w != 1024:
output = output * h
else:
output = output * 1024
padh, padw, auxh, auxw = padding
output[:, 0] = output[:, 0] - padw // 2
output[:, 1] = output[:, 1] - padh // 2
return output
def validate_landmarks_consistency(landmarks, original_landmarks, threshold=0.05):
"""Validate that corrected landmarks maintain anatomical consistency"""
try:
# Check if heart is still between lungs
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
rl_center_x = np.mean(RL[:, 0])
ll_center_x = np.mean(LL[:, 0])
h_center_x = np.mean(H[:, 0])
# Heart should be between lung centers
if not (min(rl_center_x, ll_center_x) <= h_center_x <= max(rl_center_x, ll_center_x)):
print("Warning: Heart position validation failed")
return False
# Check if total change is reasonable
total_change = np.mean(np.linalg.norm(landmarks - original_landmarks, axis=1))
relative_change = total_change / np.mean(np.linalg.norm(original_landmarks, axis=1))
if relative_change > threshold:
print(f"Warning: Landmarks changed by {relative_change:.3f}, exceeds threshold {threshold}")
return False
return True
except Exception as e:
print(f"Error in landmark validation: {e}")
return False
def calculate_ctr_robust(landmarks, corrected_landmarks=None):
"""Calculate CTR with multiple validation steps"""
try:
original_landmarks = landmarks.copy()
if corrected_landmarks is not None:
RL, LL, H, tilt_angle = corrected_landmarks
# Validate correction
corrected_all = np.vstack([RL, LL, H])
if validate_landmarks_consistency(corrected_all, original_landmarks):
landmarks_to_use = corrected_all
correction_applied = True
else:
# Use original landmarks if validation fails
H = landmarks[94:]
RL = landmarks[0:44]
LL = landmarks[44:94]
landmarks_to_use = landmarks
correction_applied = False
tilt_angle = 0
else:
H = landmarks[94:]
RL = landmarks[0:44]
LL = landmarks[44:94]
landmarks_to_use = landmarks
tilt_angle = 0
correction_applied = False
# Method 1: Traditional width measurement
cardiac_width_1 = np.max(H[:, 0]) - np.min(H[:, 0])
thoracic_width_1 = max(np.max(RL[:, 0]), np.max(LL[:, 0])) - min(np.min(RL[:, 0]), np.min(LL[:, 0]))
# Method 2: Centroid-based measurement (more robust to outliers)
h_centroid = np.mean(H, axis=0)
rl_centroid = np.mean(RL, axis=0)
ll_centroid = np.mean(LL, axis=0)
# Find widest points from centroids
h_distances = np.linalg.norm(H - h_centroid, axis=1)
cardiac_width_2 = 2 * np.max(h_distances)
thoracic_width_2 = max(np.max(RL[:, 0]), np.max(LL[:, 0])) - min(np.min(RL[:, 0]), np.min(LL[:, 0]))
# Method 3: Percentile-based measurement (removes extreme outliers)
cardiac_x_coords = H[:, 0]
cardiac_width_3 = np.percentile(cardiac_x_coords, 95) - np.percentile(cardiac_x_coords, 5)
lung_x_coords = np.concatenate([RL[:, 0], LL[:, 0]])
thoracic_width_3 = np.percentile(lung_x_coords, 95) - np.percentile(lung_x_coords, 5)
# Calculate CTR for each method
ctr_1 = cardiac_width_1 / thoracic_width_1 if thoracic_width_1 > 0 else 0
ctr_2 = cardiac_width_2 / thoracic_width_2 if thoracic_width_2 > 0 else 0
ctr_3 = cardiac_width_3 / thoracic_width_3 if thoracic_width_3 > 0 else 0
# Validate consistency between methods
ctr_values = [ctr_1, ctr_2, ctr_3]
ctr_std = np.std(ctr_values)
if ctr_std > 0.05: # High variance between methods
print(f"Warning: CTR calculation methods show high variance (std: {ctr_std:.3f})")
confidence = "Low"
elif ctr_std > 0.02:
confidence = "Medium"
else:
confidence = "High"
# Use median of methods for final result
final_ctr = np.median(ctr_values)
return {
'ctr': round(final_ctr, 3),
'tilt_angle': abs(tilt_angle),
'correction_applied': correction_applied,
'confidence': confidence,
'method_variance': round(ctr_std, 4),
'individual_results': {
'traditional': round(ctr_1, 3),
'centroid': round(ctr_2, 3),
'percentile': round(ctr_3, 3)
}
}
except Exception as e:
print(f"Error in robust CTR calculation: {e}")
return {
'ctr': 0,
'tilt_angle': 0,
'correction_applied': False,
'confidence': 'Error',
'method_variance': 0,
'individual_results': {}
}
def detect_image_rotation_advanced(img):
"""Enhanced rotation detection using multiple methods"""
try:
angles = []
# Method 1: Edge-based detection with focus on spine/mediastinum
edges = cv2.Canny((img * 255).astype(np.uint8), 50, 150)
h, w = img.shape
# Focus on central region where spine should be
spine_region = edges[h//4:3*h//4, w//3:2*w//3]
# Find strong vertical lines (spine alignment)
lines = cv2.HoughLines(spine_region, 1, np.pi/180, threshold=50)
if lines is not None:
for line in lines[:5]: # Top 5 lines
rho, theta = line[0]
angle = np.degrees(theta) - 90
if abs(angle) < 30: # Near vertical lines
angles.append(angle)
# Method 2: Chest boundary detection
# Find chest outline using contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Get largest contour (chest boundary)
largest_contour = max(contours, key=cv2.contourArea)
# Fit ellipse to chest boundary
if len(largest_contour) >= 5:
ellipse = cv2.fitEllipse(largest_contour)
chest_angle = ellipse[2] - 90 # Convert to rotation angle
if abs(chest_angle) < 45:
angles.append(chest_angle)
# Method 3: Template-based symmetry detection
# Check left-right symmetry
left_half = img[:, :w//2]
right_half = np.fliplr(img[:, w//2:])
# Try different rotation angles to find best symmetry
best_angle = 0
best_correlation = 0
for test_angle in range(-15, 16, 2):
if test_angle == 0:
test_left = left_half
else:
center = (left_half.shape[1]//2, left_half.shape[0]//2)
rotation_matrix = cv2.getRotationMatrix2D(center, test_angle, 1.0)
test_left = cv2.warpAffine(left_half, rotation_matrix,
(left_half.shape[1], left_half.shape[0]))
# Calculate correlation
correlation = cv2.matchTemplate(test_left, right_half, cv2.TM_CCOEFF_NORMED).max()
if correlation > best_correlation:
best_correlation = correlation
best_angle = test_angle
if best_correlation > 0.3: # Good symmetry found
angles.append(best_angle)
# Combine all methods
if angles:
# Remove outliers using IQR
angles = np.array(angles)
Q1, Q3 = np.percentile(angles, [25, 75])
IQR = Q3 - Q1
filtered_angles = angles[(angles >= Q1 - 1.5*IQR) & (angles <= Q3 + 1.5*IQR)]
if len(filtered_angles) > 0:
final_angle = np.median(filtered_angles)
return final_angle if abs(final_angle) > 1 else 0
return 0
except Exception as e:
print(f"Error in advanced rotation detection: {e}")
return 0
def rotate_image(img, angle):
"""Rotate image by given angle"""
try:
if abs(angle) < 1:
return img, 0
h, w = img.shape[:2]
center = (w // 2, h // 2)
# Get rotation matrix
rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)
# Calculate new dimensions
cos_angle = abs(rotation_matrix[0, 0])
sin_angle = abs(rotation_matrix[0, 1])
new_w = int((h * sin_angle) + (w * cos_angle))
new_h = int((h * cos_angle) + (w * sin_angle))
# Adjust translation
rotation_matrix[0, 2] += (new_w / 2) - center[0]
rotation_matrix[1, 2] += (new_h / 2) - center[1]
# Rotate image
rotated = cv2.warpAffine(img, rotation_matrix, (new_w, new_h),
borderMode=cv2.BORDER_CONSTANT, borderValue=0)
return rotated, angle
except Exception as e:
print(f"Error in image rotation: {e}")
return img, 0
def segment(input_img):
global hybrid, device
try:
if hybrid is None:
hybrid = loadModel(device)
original_img = cv2.imread(input_img, 0) / 255.0
original_shape = original_img.shape[:2]
# Step 1: Enhanced rotation detection (re-enabled)
detected_rotation = detect_image_rotation_advanced(original_img)
was_rotated = False
processing_img = original_img
# Step 2: Rotate image if significant rotation detected
if abs(detected_rotation) > 3:
processing_img, actual_rotation = rotate_image(original_img, -detected_rotation)
was_rotated = True
print(f"Applied rotation correction: {detected_rotation:.1f}°")
else:
actual_rotation = 0
# Step 3: Preprocess the image
img, (h, w, padding) = preprocess(processing_img)
# Step 4: AI segmentation
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
with torch.no_grad():
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2)
# Step 5: Remove preprocessing
output = removePreprocess(output, (h, w, padding))
# Step 6: Rotate landmarks back if image was rotated
if was_rotated:
center = np.array([original_shape[1]/2, original_shape[0]/2])
output = rotate_points(output, actual_rotation, center)
# Step 7: Convert output to int
output = output.astype('int')
# Step 8: Draw results on original image
outseg, corrected_data = drawOnTop(original_img, output, original_shape)
except Exception as e:
print(f"Error in segmentation: {e}")
# Return a basic error response
return None, None, 0, f"Error: {str(e)}"
seg_to_save = (outseg.copy() * 255).astype('uint8')
cv2.imwrite("tmp/overlap_segmentation.png", cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR))
# Step 9: Robust CTR calculation
ctr_result = calculate_ctr_robust(output, corrected_data)
ctr_value = ctr_result['ctr']
tilt_angle = ctr_result['tilt_angle']
# Enhanced interpretation with quality indicators
interpretation_parts = []
# CTR interpretation
if ctr_value < 0.5:
base_interpretation = "Normal"
elif 0.50 <= ctr_value <= 0.55:
base_interpretation = "Mild Cardiomegaly (CTR 50-55%)"
elif 0.56 <= ctr_value <= 0.60:
base_interpretation = "Moderate Cardiomegaly (CTR 56-60%)"
elif ctr_value > 0.60:
base_interpretation = "Severe Cardiomegaly (CTR > 60%)"
else:
base_interpretation = "Cardiomegaly"
interpretation_parts.append(base_interpretation)
# Add quality indicators
if was_rotated:
interpretation_parts.append(f"Image rotation corrected ({detected_rotation:.1f}°)")
if tilt_angle > 3 and not ctr_result['correction_applied']:
interpretation_parts.append(f"Residual tilt detected ({tilt_angle:.1f}°)")
final_interpretation = " | ".join(interpretation_parts)
return outseg, "tmp/overlap_segmentation.png", ctr_value, final_interpretation
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("""
# Chest X-ray HybridGNet Segmentation.
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
Instructions:
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
2. Click on "Segment Image".
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation.
Please check citations below.
""")
with gr.Tab("Segment Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", height=750)
with gr.Row():
clear_button = gr.Button("Clear")
image_button = gr.Button("Segment Image")
gr.Examples(inputs=image_input,
examples=['utils/example1.jpg', 'utils/example2.jpg', 'utils/example3.png',
'utils/example4.jpg'])
with gr.Column():
image_output = gr.Image(type="filepath", height=750)
with gr.Row():
ctr_output = gr.Number(label="CTR (Cardiothoracic Ratio)")
ctr_interpretation = gr.Textbox(label="Interpretation", interactive=False)
results = gr.File()
gr.Markdown("""
If you use this code, please cite:
```
@article{gaggion2022TMI,
doi = {10.1109/tmi.2022.3224660},
url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
year = 2022,
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
journal = {{IEEE} Transactions on Medical Imaging}
}
```
This model was trained following the procedure explained on:
```
@INPROCEEDINGS{gaggion2022ISBI,
author={Gaggion, Nicolás and Vakalopoulou, Maria and Milone, Diego H. and Ferrante, Enzo},
booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)},
title={Multi-Center Anatomical Segmentation with Heterogeneous Labels Via Landmark-Based Models},
year={2023},
volume={},
number={},
pages={1-5},
doi={10.1109/ISBI53787.2023.10230691}
}
```
Example images extracted from Wikipedia, released under:
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
Author: Nicolás Gaggion
Website: [ngaggion.github.io](https://ngaggion.github.io/)
""")
clear_button.click(lambda: None, None, image_input, queue=False)
clear_button.click(lambda: None, None, image_output, queue=False)
clear_button.click(lambda: None, None, ctr_output, queue=False)
clear_button.click(lambda: None, None, ctr_interpretation, queue=False)
image_button.click(segment, inputs=image_input, outputs=[image_output, results, ctr_output, ctr_interpretation], queue=False)
demo.launch()