Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import gradio as gr | |
| import cv2 | |
| from models.HybridGNet2IGSC import Hybrid | |
| from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart | |
| import scipy.sparse as sp | |
| import torch | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| hybrid = None | |
| def getDenseMask(landmarks, h, w): | |
| RL = landmarks[0:44] | |
| LL = landmarks[44:94] | |
| H = landmarks[94:] | |
| img = np.zeros([h, w], dtype='uint8') | |
| RL = RL.reshape(-1, 1, 2).astype('int') | |
| LL = LL.reshape(-1, 1, 2).astype('int') | |
| H = H.reshape(-1, 1, 2).astype('int') | |
| img = cv2.drawContours(img, [RL], -1, 1, -1) | |
| img = cv2.drawContours(img, [LL], -1, 1, -1) | |
| img = cv2.drawContours(img, [H], -1, 2, -1) | |
| return img | |
| def getMasks(landmarks, h, w): | |
| RL = landmarks[0:44] | |
| LL = landmarks[44:94] | |
| H = landmarks[94:] | |
| RL = RL.reshape(-1, 1, 2).astype('int') | |
| LL = LL.reshape(-1, 1, 2).astype('int') | |
| H = H.reshape(-1, 1, 2).astype('int') | |
| RL_mask = np.zeros([h, w], dtype='uint8') | |
| LL_mask = np.zeros([h, w], dtype='uint8') | |
| H_mask = np.zeros([h, w], dtype='uint8') | |
| RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1) | |
| LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1) | |
| H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1) | |
| return RL_mask, LL_mask, H_mask | |
| def calculate_image_tilt(landmarks): | |
| """Calculate image tilt angle based on lung symmetry""" | |
| RL = landmarks[0:44] # Right lung | |
| LL = landmarks[44:94] # Left lung | |
| # Find the topmost points of both lungs | |
| rl_top_idx = np.argmin(RL[:, 1]) | |
| ll_top_idx = np.argmin(LL[:, 1]) | |
| rl_top = RL[rl_top_idx] | |
| ll_top = LL[ll_top_idx] | |
| # Calculate angle between the line connecting lung tops and horizontal | |
| dx = ll_top[0] - rl_top[0] | |
| dy = ll_top[1] - rl_top[1] | |
| angle_rad = np.arctan2(dy, dx) | |
| angle_deg = np.degrees(angle_rad) | |
| return angle_deg, rl_top, ll_top | |
| def rotate_points(points, angle_deg, center): | |
| """Rotate points around a center by given angle""" | |
| angle_rad = np.radians(-angle_deg) # Negative to correct the tilt | |
| cos_a = np.cos(angle_rad) | |
| sin_a = np.sin(angle_rad) | |
| # Translate to origin | |
| translated = points - center | |
| # Rotate | |
| rotated = np.zeros_like(translated) | |
| rotated[:, 0] = translated[:, 0] * cos_a - translated[:, 1] * sin_a | |
| rotated[:, 1] = translated[:, 0] * sin_a + translated[:, 1] * cos_a | |
| # Translate back | |
| return rotated + center | |
| def drawOnTop(img, landmarks, original_shape): | |
| h, w = original_shape | |
| output = getDenseMask(landmarks, h, w) | |
| image = np.zeros([h, w, 3]) | |
| image[:, :, 0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float') | |
| image[:, :, 1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float') | |
| image[:, :, 2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float') | |
| image = np.clip(image, 0, 1) | |
| RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:] | |
| # Calculate image tilt and correct it for measurements | |
| tilt_angle, rl_top, ll_top = calculate_image_tilt(landmarks) | |
| image_center = np.array([w/2, h/2]) | |
| # Draw tilt reference line (green) | |
| image = cv2.line(image, (int(rl_top[0]), int(rl_top[1])), (int(ll_top[0]), int(ll_top[1])), (0, 1, 0), 1) | |
| # Add tilt angle text | |
| tilt_text = f"Tilt: {tilt_angle:.1f} degrees" | |
| cv2.putText(image, tilt_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 1, 0), 2) | |
| # Correct landmarks for tilt | |
| if abs(tilt_angle) > 2: # Only correct if tilt is significant | |
| RL_corrected = rotate_points(RL, tilt_angle, image_center) | |
| LL_corrected = rotate_points(LL, tilt_angle, image_center) | |
| H_corrected = rotate_points(H, tilt_angle, image_center) | |
| cv2.putText(image, "Tilt Corrected", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (1, 1, 0), 2) | |
| else: | |
| RL_corrected, LL_corrected, H_corrected = RL, LL, H | |
| # Draw the landmarks as dots | |
| for l in RL: | |
| image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1) | |
| for l in LL: | |
| image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1) | |
| for l in H: | |
| image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1) | |
| # Draw measurement lines that follow the image tilt for visual accuracy | |
| # Use corrected coordinates for accurate measurement, but draw tilted lines for visual appeal | |
| # Heart (red line) - calculate positions from corrected coordinates | |
| heart_xmin_corrected = np.min(H_corrected[:, 0]) | |
| heart_xmax_corrected = np.max(H_corrected[:, 0]) | |
| heart_y_corrected = np.mean([H_corrected[np.argmin(H_corrected[:, 0]), 1], H_corrected[np.argmax(H_corrected[:, 0]), 1]]) | |
| # Rotate back to match the tilted image for display | |
| heart_points_corrected = np.array([[heart_xmin_corrected, heart_y_corrected], [heart_xmax_corrected, heart_y_corrected]]) | |
| heart_points_display = rotate_points(heart_points_corrected, -tilt_angle, image_center) # Rotate back for display | |
| heart_start = (int(heart_points_display[0, 0]), int(heart_points_display[0, 1])) | |
| heart_end = (int(heart_points_display[1, 0]), int(heart_points_display[1, 1])) | |
| image = cv2.line(image, heart_start, heart_end, (1, 0, 0), 2) | |
| # Add perpendicular lines at heart endpoints | |
| line_length = 30 | |
| # Calculate perpendicular direction | |
| heart_dx = heart_end[0] - heart_start[0] | |
| heart_dy = heart_end[1] - heart_start[1] | |
| heart_length = np.sqrt(heart_dx**2 + heart_dy**2) | |
| if heart_length > 0: | |
| perp_x = -heart_dy / heart_length * line_length | |
| perp_y = heart_dx / heart_length * line_length | |
| # Perpendicular lines at start point | |
| image = cv2.line(image, | |
| (int(heart_start[0] + perp_x), int(heart_start[1] + perp_y)), | |
| (int(heart_start[0] - perp_x), int(heart_start[1] - perp_y)), | |
| (1, 0, 0), 2) | |
| # Perpendicular lines at end point | |
| image = cv2.line(image, | |
| (int(heart_end[0] + perp_x), int(heart_end[1] + perp_y)), | |
| (int(heart_end[0] - perp_x), int(heart_end[1] - perp_y)), | |
| (1, 0, 0), 2) | |
| # Thorax (blue line) - calculate positions from corrected coordinates | |
| thorax_xmin_corrected = min(np.min(RL_corrected[:, 0]), np.min(LL_corrected[:, 0])) | |
| thorax_xmax_corrected = max(np.max(RL_corrected[:, 0]), np.max(LL_corrected[:, 0])) | |
| # Find y at leftmost and rightmost points (corrected) | |
| if np.min(RL_corrected[:, 0]) < np.min(LL_corrected[:, 0]): | |
| thorax_ymin_corrected = RL_corrected[np.argmin(RL_corrected[:, 0]), 1] | |
| else: | |
| thorax_ymin_corrected = LL_corrected[np.argmin(LL_corrected[:, 0]), 1] | |
| if np.max(RL_corrected[:, 0]) > np.max(LL_corrected[:, 0]): | |
| thorax_ymax_corrected = RL_corrected[np.argmax(RL_corrected[:, 0]), 1] | |
| else: | |
| thorax_ymax_corrected = LL_corrected[np.argmax(LL_corrected[:, 0]), 1] | |
| thorax_y_corrected = np.mean([thorax_ymin_corrected, thorax_ymax_corrected]) | |
| # Rotate back to match the tilted image for display | |
| thorax_points_corrected = np.array([[thorax_xmin_corrected, thorax_y_corrected], [thorax_xmax_corrected, thorax_y_corrected]]) | |
| thorax_points_display = rotate_points(thorax_points_corrected, -tilt_angle, image_center) # Rotate back for display | |
| thorax_start = (int(thorax_points_display[0, 0]), int(thorax_points_display[0, 1])) | |
| thorax_end = (int(thorax_points_display[1, 0]), int(thorax_points_display[1, 1])) | |
| image = cv2.line(image, thorax_start, thorax_end, (0, 0, 1), 2) | |
| # Add perpendicular lines at thorax endpoints | |
| thorax_dx = thorax_end[0] - thorax_start[0] | |
| thorax_dy = thorax_end[1] - thorax_start[1] | |
| thorax_length = np.sqrt(thorax_dx**2 + thorax_dy**2) | |
| if thorax_length > 0: | |
| perp_x = -thorax_dy / thorax_length * line_length | |
| perp_y = thorax_dx / thorax_length * line_length | |
| # Perpendicular lines at start point | |
| image = cv2.line(image, | |
| (int(thorax_start[0] + perp_x), int(thorax_start[1] + perp_y)), | |
| (int(thorax_start[0] - perp_x), int(thorax_start[1] - perp_y)), | |
| (0, 0, 1), 2) | |
| # Perpendicular lines at end point | |
| image = cv2.line(image, | |
| (int(thorax_end[0] + perp_x), int(thorax_end[1] + perp_y)), | |
| (int(thorax_end[0] - perp_x), int(thorax_end[1] - perp_y)), | |
| (0, 0, 1), 2) | |
| # Store corrected landmarks for CTR calculation | |
| return image, (RL_corrected, LL_corrected, H_corrected, tilt_angle) | |
| def loadModel(device): | |
| A, AD, D, U = genMatrixesLungsHeart() | |
| N1 = A.shape[0] | |
| N2 = AD.shape[0] | |
| A = sp.csc_matrix(A).tocoo() | |
| AD = sp.csc_matrix(AD).tocoo() | |
| D = sp.csc_matrix(D).tocoo() | |
| U = sp.csc_matrix(U).tocoo() | |
| D_ = [D.copy()] | |
| U_ = [U.copy()] | |
| config = {} | |
| config['n_nodes'] = [N1, N1, N1, N2, N2, N2] | |
| A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()] | |
| A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_)) | |
| config['latents'] = 64 | |
| config['inputsize'] = 1024 | |
| f = 32 | |
| config['filters'] = [2, f, f, f, f // 2, f // 2, f // 2] | |
| config['skip_features'] = f | |
| hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device) | |
| hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device))) | |
| hybrid.eval() | |
| return hybrid | |
| def pad_to_square(img): | |
| h, w = img.shape[:2] | |
| if h > w: | |
| padw = (h - w) | |
| auxw = padw % 2 | |
| img = np.pad(img, ((0, 0), (padw // 2, padw // 2 + auxw)), 'constant') | |
| padh = 0 | |
| auxh = 0 | |
| else: | |
| padh = (w - h) | |
| auxh = padh % 2 | |
| img = np.pad(img, ((padh // 2, padh // 2 + auxh), (0, 0)), 'constant') | |
| padw = 0 | |
| auxw = 0 | |
| return img, (padh, padw, auxh, auxw) | |
| def preprocess(input_img): | |
| img, padding = pad_to_square(input_img) | |
| h, w = img.shape[:2] | |
| if h != 1024 or w != 1024: | |
| img = cv2.resize(img, (1024, 1024), interpolation=cv2.INTER_CUBIC) | |
| return img, (h, w, padding) | |
| def removePreprocess(output, info): | |
| h, w, padding = info | |
| if h != 1024 or w != 1024: | |
| output = output * h | |
| else: | |
| output = output * 1024 | |
| padh, padw, auxh, auxw = padding | |
| output[:, 0] = output[:, 0] - padw // 2 | |
| output[:, 1] = output[:, 1] - padh // 2 | |
| return output | |
| def validate_landmarks_consistency(landmarks, original_landmarks, threshold=0.05): | |
| """Validate that corrected landmarks maintain anatomical consistency""" | |
| try: | |
| # Check if heart is still between lungs | |
| RL = landmarks[0:44] | |
| LL = landmarks[44:94] | |
| H = landmarks[94:] | |
| rl_center_x = np.mean(RL[:, 0]) | |
| ll_center_x = np.mean(LL[:, 0]) | |
| h_center_x = np.mean(H[:, 0]) | |
| # Heart should be between lung centers | |
| if not (min(rl_center_x, ll_center_x) <= h_center_x <= max(rl_center_x, ll_center_x)): | |
| print("Warning: Heart position validation failed") | |
| return False | |
| # Check if total change is reasonable | |
| total_change = np.mean(np.linalg.norm(landmarks - original_landmarks, axis=1)) | |
| relative_change = total_change / np.mean(np.linalg.norm(original_landmarks, axis=1)) | |
| if relative_change > threshold: | |
| print(f"Warning: Landmarks changed by {relative_change:.3f}, exceeds threshold {threshold}") | |
| return False | |
| return True | |
| except Exception as e: | |
| print(f"Error in landmark validation: {e}") | |
| return False | |
| def calculate_ctr_robust(landmarks, corrected_landmarks=None): | |
| """Calculate CTR with multiple validation steps""" | |
| try: | |
| original_landmarks = landmarks.copy() | |
| if corrected_landmarks is not None: | |
| RL, LL, H, tilt_angle = corrected_landmarks | |
| # Validate correction | |
| corrected_all = np.vstack([RL, LL, H]) | |
| if validate_landmarks_consistency(corrected_all, original_landmarks): | |
| landmarks_to_use = corrected_all | |
| correction_applied = True | |
| else: | |
| # Use original landmarks if validation fails | |
| H = landmarks[94:] | |
| RL = landmarks[0:44] | |
| LL = landmarks[44:94] | |
| landmarks_to_use = landmarks | |
| correction_applied = False | |
| tilt_angle = 0 | |
| else: | |
| H = landmarks[94:] | |
| RL = landmarks[0:44] | |
| LL = landmarks[44:94] | |
| landmarks_to_use = landmarks | |
| tilt_angle = 0 | |
| correction_applied = False | |
| # Method 1: Traditional width measurement | |
| cardiac_width_1 = np.max(H[:, 0]) - np.min(H[:, 0]) | |
| thoracic_width_1 = max(np.max(RL[:, 0]), np.max(LL[:, 0])) - min(np.min(RL[:, 0]), np.min(LL[:, 0])) | |
| # Method 2: Centroid-based measurement (more robust to outliers) | |
| h_centroid = np.mean(H, axis=0) | |
| rl_centroid = np.mean(RL, axis=0) | |
| ll_centroid = np.mean(LL, axis=0) | |
| # Find widest points from centroids | |
| h_distances = np.linalg.norm(H - h_centroid, axis=1) | |
| cardiac_width_2 = 2 * np.max(h_distances) | |
| thoracic_width_2 = max(np.max(RL[:, 0]), np.max(LL[:, 0])) - min(np.min(RL[:, 0]), np.min(LL[:, 0])) | |
| # Method 3: Percentile-based measurement (removes extreme outliers) | |
| cardiac_x_coords = H[:, 0] | |
| cardiac_width_3 = np.percentile(cardiac_x_coords, 95) - np.percentile(cardiac_x_coords, 5) | |
| lung_x_coords = np.concatenate([RL[:, 0], LL[:, 0]]) | |
| thoracic_width_3 = np.percentile(lung_x_coords, 95) - np.percentile(lung_x_coords, 5) | |
| # Calculate CTR for each method | |
| ctr_1 = cardiac_width_1 / thoracic_width_1 if thoracic_width_1 > 0 else 0 | |
| ctr_2 = cardiac_width_2 / thoracic_width_2 if thoracic_width_2 > 0 else 0 | |
| ctr_3 = cardiac_width_3 / thoracic_width_3 if thoracic_width_3 > 0 else 0 | |
| # Validate consistency between methods | |
| ctr_values = [ctr_1, ctr_2, ctr_3] | |
| ctr_std = np.std(ctr_values) | |
| if ctr_std > 0.05: # High variance between methods | |
| print(f"Warning: CTR calculation methods show high variance (std: {ctr_std:.3f})") | |
| confidence = "Low" | |
| elif ctr_std > 0.02: | |
| confidence = "Medium" | |
| else: | |
| confidence = "High" | |
| # Use median of methods for final result | |
| final_ctr = np.median(ctr_values) | |
| return { | |
| 'ctr': round(final_ctr, 3), | |
| 'tilt_angle': abs(tilt_angle), | |
| 'correction_applied': correction_applied, | |
| 'confidence': confidence, | |
| 'method_variance': round(ctr_std, 4), | |
| 'individual_results': { | |
| 'traditional': round(ctr_1, 3), | |
| 'centroid': round(ctr_2, 3), | |
| 'percentile': round(ctr_3, 3) | |
| } | |
| } | |
| except Exception as e: | |
| print(f"Error in robust CTR calculation: {e}") | |
| return { | |
| 'ctr': 0, | |
| 'tilt_angle': 0, | |
| 'correction_applied': False, | |
| 'confidence': 'Error', | |
| 'method_variance': 0, | |
| 'individual_results': {} | |
| } | |
| def detect_image_rotation_advanced(img): | |
| """Enhanced rotation detection using multiple methods""" | |
| try: | |
| angles = [] | |
| # Method 1: Edge-based detection with focus on spine/mediastinum | |
| edges = cv2.Canny((img * 255).astype(np.uint8), 50, 150) | |
| h, w = img.shape | |
| # Focus on central region where spine should be | |
| spine_region = edges[h//4:3*h//4, w//3:2*w//3] | |
| # Find strong vertical lines (spine alignment) | |
| lines = cv2.HoughLines(spine_region, 1, np.pi/180, threshold=50) | |
| if lines is not None: | |
| for line in lines[:5]: # Top 5 lines | |
| rho, theta = line[0] | |
| angle = np.degrees(theta) - 90 | |
| if abs(angle) < 30: # Near vertical lines | |
| angles.append(angle) | |
| # Method 2: Chest boundary detection | |
| # Find chest outline using contours | |
| contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| if contours: | |
| # Get largest contour (chest boundary) | |
| largest_contour = max(contours, key=cv2.contourArea) | |
| # Fit ellipse to chest boundary | |
| if len(largest_contour) >= 5: | |
| ellipse = cv2.fitEllipse(largest_contour) | |
| chest_angle = ellipse[2] - 90 # Convert to rotation angle | |
| if abs(chest_angle) < 45: | |
| angles.append(chest_angle) | |
| # Method 3: Template-based symmetry detection | |
| # Check left-right symmetry | |
| left_half = img[:, :w//2] | |
| right_half = np.fliplr(img[:, w//2:]) | |
| # Try different rotation angles to find best symmetry | |
| best_angle = 0 | |
| best_correlation = 0 | |
| for test_angle in range(-15, 16, 2): | |
| if test_angle == 0: | |
| test_left = left_half | |
| else: | |
| center = (left_half.shape[1]//2, left_half.shape[0]//2) | |
| rotation_matrix = cv2.getRotationMatrix2D(center, test_angle, 1.0) | |
| test_left = cv2.warpAffine(left_half, rotation_matrix, | |
| (left_half.shape[1], left_half.shape[0])) | |
| # Calculate correlation | |
| correlation = cv2.matchTemplate(test_left, right_half, cv2.TM_CCOEFF_NORMED).max() | |
| if correlation > best_correlation: | |
| best_correlation = correlation | |
| best_angle = test_angle | |
| if best_correlation > 0.3: # Good symmetry found | |
| angles.append(best_angle) | |
| # Combine all methods | |
| if angles: | |
| # Remove outliers using IQR | |
| angles = np.array(angles) | |
| Q1, Q3 = np.percentile(angles, [25, 75]) | |
| IQR = Q3 - Q1 | |
| filtered_angles = angles[(angles >= Q1 - 1.5*IQR) & (angles <= Q3 + 1.5*IQR)] | |
| if len(filtered_angles) > 0: | |
| final_angle = np.median(filtered_angles) | |
| return final_angle if abs(final_angle) > 1 else 0 | |
| return 0 | |
| except Exception as e: | |
| print(f"Error in advanced rotation detection: {e}") | |
| return 0 | |
| def rotate_image(img, angle): | |
| """Rotate image by given angle""" | |
| try: | |
| if abs(angle) < 1: | |
| return img, 0 | |
| h, w = img.shape[:2] | |
| center = (w // 2, h // 2) | |
| # Get rotation matrix | |
| rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0) | |
| # Calculate new dimensions | |
| cos_angle = abs(rotation_matrix[0, 0]) | |
| sin_angle = abs(rotation_matrix[0, 1]) | |
| new_w = int((h * sin_angle) + (w * cos_angle)) | |
| new_h = int((h * cos_angle) + (w * sin_angle)) | |
| # Adjust translation | |
| rotation_matrix[0, 2] += (new_w / 2) - center[0] | |
| rotation_matrix[1, 2] += (new_h / 2) - center[1] | |
| # Rotate image | |
| rotated = cv2.warpAffine(img, rotation_matrix, (new_w, new_h), | |
| borderMode=cv2.BORDER_CONSTANT, borderValue=0) | |
| return rotated, angle | |
| except Exception as e: | |
| print(f"Error in image rotation: {e}") | |
| return img, 0 | |
| def segment(input_img): | |
| global hybrid, device | |
| try: | |
| if hybrid is None: | |
| hybrid = loadModel(device) | |
| original_img = cv2.imread(input_img, 0) / 255.0 | |
| original_shape = original_img.shape[:2] | |
| # Step 1: Enhanced rotation detection (re-enabled) | |
| detected_rotation = detect_image_rotation_advanced(original_img) | |
| was_rotated = False | |
| processing_img = original_img | |
| # Step 2: Rotate image if significant rotation detected | |
| if abs(detected_rotation) > 3: | |
| processing_img, actual_rotation = rotate_image(original_img, -detected_rotation) | |
| was_rotated = True | |
| print(f"Applied rotation correction: {detected_rotation:.1f}°") | |
| else: | |
| actual_rotation = 0 | |
| # Step 3: Preprocess the image | |
| img, (h, w, padding) = preprocess(processing_img) | |
| # Step 4: AI segmentation | |
| data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float() | |
| with torch.no_grad(): | |
| output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) | |
| # Step 5: Remove preprocessing | |
| output = removePreprocess(output, (h, w, padding)) | |
| # Step 6: Rotate landmarks back if image was rotated | |
| if was_rotated: | |
| center = np.array([original_shape[1]/2, original_shape[0]/2]) | |
| output = rotate_points(output, actual_rotation, center) | |
| # Step 7: Convert output to int | |
| output = output.astype('int') | |
| # Step 8: Draw results on original image | |
| outseg, corrected_data = drawOnTop(original_img, output, original_shape) | |
| except Exception as e: | |
| print(f"Error in segmentation: {e}") | |
| # Return a basic error response | |
| return None, None, 0, f"Error: {str(e)}" | |
| seg_to_save = (outseg.copy() * 255).astype('uint8') | |
| cv2.imwrite("tmp/overlap_segmentation.png", cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR)) | |
| # Step 9: Robust CTR calculation | |
| ctr_result = calculate_ctr_robust(output, corrected_data) | |
| ctr_value = ctr_result['ctr'] | |
| tilt_angle = ctr_result['tilt_angle'] | |
| # Enhanced interpretation with quality indicators | |
| interpretation_parts = [] | |
| # CTR interpretation | |
| if ctr_value < 0.5: | |
| base_interpretation = "Normal" | |
| elif 0.50 <= ctr_value <= 0.55: | |
| base_interpretation = "Mild Cardiomegaly (CTR 50-55%)" | |
| elif 0.56 <= ctr_value <= 0.60: | |
| base_interpretation = "Moderate Cardiomegaly (CTR 56-60%)" | |
| elif ctr_value > 0.60: | |
| base_interpretation = "Severe Cardiomegaly (CTR > 60%)" | |
| else: | |
| base_interpretation = "Cardiomegaly" | |
| interpretation_parts.append(base_interpretation) | |
| # Add quality indicators | |
| if was_rotated: | |
| interpretation_parts.append(f"Image rotation corrected ({detected_rotation:.1f}°)") | |
| if tilt_angle > 3 and not ctr_result['correction_applied']: | |
| interpretation_parts.append(f"Residual tilt detected ({tilt_angle:.1f}°)") | |
| final_interpretation = " | ".join(interpretation_parts) | |
| return outseg, "tmp/overlap_segmentation.png", ctr_value, final_interpretation | |
| if __name__ == "__main__": | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| # Chest X-ray HybridGNet Segmentation. | |
| Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis." | |
| Instructions: | |
| 1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format. | |
| 2. Click on "Segment Image". | |
| Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation. | |
| Please check citations below. | |
| """) | |
| with gr.Tab("Segment Image"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image(type="filepath", height=750) | |
| with gr.Row(): | |
| clear_button = gr.Button("Clear") | |
| image_button = gr.Button("Segment Image") | |
| gr.Examples(inputs=image_input, | |
| examples=['utils/example1.jpg', 'utils/example2.jpg', 'utils/example3.png', | |
| 'utils/example4.jpg']) | |
| with gr.Column(): | |
| image_output = gr.Image(type="filepath", height=750) | |
| with gr.Row(): | |
| ctr_output = gr.Number(label="CTR (Cardiothoracic Ratio)") | |
| ctr_interpretation = gr.Textbox(label="Interpretation", interactive=False) | |
| results = gr.File() | |
| gr.Markdown(""" | |
| If you use this code, please cite: | |
| ``` | |
| @article{gaggion2022TMI, | |
| doi = {10.1109/tmi.2022.3224660}, | |
| url = {https://doi.org/10.1109%2Ftmi.2022.3224660}, | |
| year = 2022, | |
| publisher = {Institute of Electrical and Electronics Engineers ({IEEE})}, | |
| author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante}, | |
| title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis}, | |
| journal = {{IEEE} Transactions on Medical Imaging} | |
| } | |
| ``` | |
| This model was trained following the procedure explained on: | |
| ``` | |
| @INPROCEEDINGS{gaggion2022ISBI, | |
| author={Gaggion, Nicolás and Vakalopoulou, Maria and Milone, Diego H. and Ferrante, Enzo}, | |
| booktitle={2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)}, | |
| title={Multi-Center Anatomical Segmentation with Heterogeneous Labels Via Landmark-Based Models}, | |
| year={2023}, | |
| volume={}, | |
| number={}, | |
| pages={1-5}, | |
| doi={10.1109/ISBI53787.2023.10230691} | |
| } | |
| ``` | |
| Example images extracted from Wikipedia, released under: | |
| 1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg | |
| 2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg | |
| 3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg | |
| 4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg | |
| Author: Nicolás Gaggion | |
| Website: [ngaggion.github.io](https://ngaggion.github.io/) | |
| """) | |
| clear_button.click(lambda: None, None, image_input, queue=False) | |
| clear_button.click(lambda: None, None, image_output, queue=False) | |
| clear_button.click(lambda: None, None, ctr_output, queue=False) | |
| clear_button.click(lambda: None, None, ctr_interpretation, queue=False) | |
| image_button.click(segment, inputs=image_input, outputs=[image_output, results, ctr_output, ctr_interpretation], queue=False) | |
| demo.launch() |