| import unittest | |
| from unittest.mock import MagicMock | |
| import pandas as pd | |
| import streamlit as st | |
| from your_module import fine_tune_model | |
| class TestModelFineTuning(unittest.TestCase): | |
| def test_upload_and_fine_tune_model(self, mock_file_uploader): | |
| # Mock the file upload and return a mock DataFrame | |
| mock_file_uploader.return_value = MagicMock() | |
| mock_file_uploader.return_value.read.return_value = b'col1,col2\nvalue1,value2\nvalue3,value4' | |
| # Test dataset upload and model fine-tuning | |
| df = pd.read_csv(mock_file_uploader.return_value) | |
| self.assertEqual(df.shape[0], 2) # Assert two rows in the mock CSV | |
| self.assertIn('col1', df.columns) # Check if 'col1' exists in columns | |
| # Simulate fine-tuning process | |
| result = fine_tune_model(df) # Assuming you have a fine-tune function | |
| # Check that the model fine-tuned successfully | |
| self.assertTrue(result) # Assuming result is True on success | |
| if __name__ == '__main__': | |
| unittest.main() | |