Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,23 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
|
| 5 |
# Sidebar for user input
|
| 6 |
st.sidebar.header("Model Configuration")
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Load model and tokenizer on demand
|
| 10 |
@st.cache_resource
|
|
@@ -12,7 +25,10 @@ def load_model(model_name):
|
|
| 12 |
try:
|
| 13 |
# Load the model and tokenizer
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
| 16 |
return tokenizer, model
|
| 17 |
except Exception as e:
|
| 18 |
st.error(f"Error loading model: {e}")
|
|
@@ -22,20 +38,28 @@ def load_model(model_name):
|
|
| 22 |
tokenizer, model = load_model(model_name)
|
| 23 |
|
| 24 |
# Input text box in the main panel
|
| 25 |
-
st.title("
|
| 26 |
-
user_input = st.text_area("Enter text
|
| 27 |
|
| 28 |
# Make prediction if user input is provided
|
| 29 |
if user_input and model and tokenizer:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
| 3 |
import torch
|
| 4 |
|
| 5 |
# Sidebar for user input
|
| 6 |
st.sidebar.header("Model Configuration")
|
| 7 |
+
model_choice = st.sidebar.selectbox("Select a model", [
|
| 8 |
+
"CyberAttackDetection",
|
| 9 |
+
"text2shellcommands",
|
| 10 |
+
"pentest_ai"
|
| 11 |
+
])
|
| 12 |
+
|
| 13 |
+
# Define the model names
|
| 14 |
+
model_mapping = {
|
| 15 |
+
"CyberAttackDetection": "Canstralian/CyberAttackDetection",
|
| 16 |
+
"text2shellcommands": "Canstralian/text2shellcommands",
|
| 17 |
+
"pentest_ai": "Canstralian/pentest_ai"
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
| 21 |
|
| 22 |
# Load model and tokenizer on demand
|
| 23 |
@st.cache_resource
|
|
|
|
| 25 |
try:
|
| 26 |
# Load the model and tokenizer
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
+
if model_name == "Canstralian/text2shellcommands":
|
| 29 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 30 |
+
else:
|
| 31 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 32 |
return tokenizer, model
|
| 33 |
except Exception as e:
|
| 34 |
st.error(f"Error loading model: {e}")
|
|
|
|
| 38 |
tokenizer, model = load_model(model_name)
|
| 39 |
|
| 40 |
# Input text box in the main panel
|
| 41 |
+
st.title(f"{model_choice} Model")
|
| 42 |
+
user_input = st.text_area("Enter text:")
|
| 43 |
|
| 44 |
# Make prediction if user input is provided
|
| 45 |
if user_input and model and tokenizer:
|
| 46 |
+
if model_choice == "text2shellcommands":
|
| 47 |
+
# For text2shellcommands model, generate shell commands
|
| 48 |
+
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
outputs = model.generate(**inputs)
|
| 51 |
+
generated_command = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
st.write(f"Generated Shell Command: {generated_command}")
|
| 53 |
|
| 54 |
+
else:
|
| 55 |
+
# For CyberAttackDetection and pentest_ai models, perform classification
|
| 56 |
+
inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True)
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
outputs = model(**inputs)
|
| 59 |
+
logits = outputs.logits
|
| 60 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 61 |
+
st.write(f"Predicted Class: {predicted_class}")
|
| 62 |
+
st.write(f"Logits: {logits}")
|
| 63 |
|
| 64 |
+
else:
|
| 65 |
+
st.info("Please enter some text for prediction.")
|