Update app.py
Browse files
app.py
CHANGED
|
@@ -19,24 +19,28 @@ model_mapping = {
|
|
| 19 |
|
| 20 |
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
| 21 |
|
| 22 |
-
#
|
| 23 |
@st.cache_resource
|
| 24 |
def load_model(model_name):
|
| 25 |
-
"""Load the model and tokenizer."""
|
| 26 |
try:
|
| 27 |
-
|
| 28 |
if model_name == "Canstralian/text2shellcommands":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 30 |
else:
|
| 31 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
| 32 |
return tokenizer, model
|
| 33 |
except Exception as e:
|
| 34 |
st.error(f"Error loading model: {e}")
|
| 35 |
return None, None
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
tokenizer, model = load_model(model_name)
|
| 40 |
|
| 41 |
# Input text box in the main panel
|
| 42 |
st.title(f"{model_choice} Model")
|
|
@@ -59,9 +63,7 @@ if user_input and model and tokenizer:
|
|
| 59 |
outputs = model(**inputs)
|
| 60 |
logits = outputs.logits
|
| 61 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 62 |
-
confidence = torch.softmax(logits, dim=-1).max().item() # Calculate confidence score
|
| 63 |
st.write(f"Predicted Class: {predicted_class}")
|
| 64 |
-
st.write(f"Confidence: {confidence:.2f}")
|
| 65 |
st.write(f"Logits: {logits}")
|
| 66 |
|
| 67 |
else:
|
|
|
|
| 19 |
|
| 20 |
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
| 21 |
|
| 22 |
+
# Load model and tokenizer on demand
|
| 23 |
@st.cache_resource
|
| 24 |
def load_model(model_name):
|
|
|
|
| 25 |
try:
|
| 26 |
+
# Fallback to a known model for debugging
|
| 27 |
if model_name == "Canstralian/text2shellcommands":
|
| 28 |
+
model_name = "t5-small" # Use a known model like T5 for testing
|
| 29 |
+
|
| 30 |
+
# Load the model and tokenizer
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 32 |
+
if "seq2seq" in model_name.lower():
|
| 33 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 34 |
else:
|
| 35 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 36 |
+
|
| 37 |
return tokenizer, model
|
| 38 |
except Exception as e:
|
| 39 |
st.error(f"Error loading model: {e}")
|
| 40 |
return None, None
|
| 41 |
|
| 42 |
+
# Load the model and tokenizer
|
| 43 |
+
tokenizer, model = load_model(model_name)
|
|
|
|
| 44 |
|
| 45 |
# Input text box in the main panel
|
| 46 |
st.title(f"{model_choice} Model")
|
|
|
|
| 63 |
outputs = model(**inputs)
|
| 64 |
logits = outputs.logits
|
| 65 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
|
|
|
| 66 |
st.write(f"Predicted Class: {predicted_class}")
|
|
|
|
| 67 |
st.write(f"Logits: {logits}")
|
| 68 |
|
| 69 |
else:
|