Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,41 @@
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
-
import
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
# Load
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Example usage
|
| 22 |
-
if __name__ == "__main__":
|
| 23 |
-
test_text = "Hello, world!"
|
| 24 |
-
result = predict(test_text)
|
| 25 |
-
print(result)
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
# Sidebar for user input
|
| 6 |
+
st.sidebar.header("Model Configuration")
|
| 7 |
+
model_name = st.sidebar.text_input("Enter model name", "huggingface/transformers")
|
| 8 |
|
| 9 |
+
# Load model and tokenizer on demand
|
| 10 |
+
@st.cache_resource
|
| 11 |
+
def load_model(model_name):
|
| 12 |
+
try:
|
| 13 |
+
# Load the model and tokenizer
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 16 |
+
return tokenizer, model
|
| 17 |
+
except Exception as e:
|
| 18 |
+
st.error(f"Error loading model: {e}")
|
| 19 |
+
return None, None
|
| 20 |
|
| 21 |
+
# Load the model and tokenizer
|
| 22 |
+
tokenizer, model = load_model(model_name)
|
| 23 |
+
|
| 24 |
+
# Input text box in the main panel
|
| 25 |
+
st.title("Text Classification with Hugging Face Models")
|
| 26 |
+
user_input = st.text_area("Enter text for classification:")
|
| 27 |
+
|
| 28 |
+
# Make prediction if user input is provided
|
| 29 |
+
if user_input and model and tokenizer:
|
| 30 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = model(**inputs)
|
| 33 |
+
|
| 34 |
+
# Display results (e.g., classification logits)
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 37 |
+
st.write(f"Predicted Class: {predicted_class}")
|
| 38 |
+
st.write(f"Logits: {logits}")
|
| 39 |
+
else:
|
| 40 |
+
st.info("Please enter some text to classify.")
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|