Create tests/test_model_finetuning
Browse files- tests/test_model_finetuning +28 -0
tests/test_model_finetuning
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import unittest
|
| 2 |
+
from unittest.mock import MagicMock
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from your_module import fine_tune_model
|
| 6 |
+
|
| 7 |
+
class TestModelFineTuning(unittest.TestCase):
|
| 8 |
+
|
| 9 |
+
@patch('streamlit.file_uploader')
|
| 10 |
+
def test_upload_and_fine_tune_model(self, mock_file_uploader):
|
| 11 |
+
# Mock the file upload and return a mock DataFrame
|
| 12 |
+
mock_file_uploader.return_value = MagicMock()
|
| 13 |
+
mock_file_uploader.return_value.read.return_value = b'col1,col2\nvalue1,value2\nvalue3,value4'
|
| 14 |
+
|
| 15 |
+
# Test dataset upload and model fine-tuning
|
| 16 |
+
df = pd.read_csv(mock_file_uploader.return_value)
|
| 17 |
+
|
| 18 |
+
self.assertEqual(df.shape[0], 2) # Assert two rows in the mock CSV
|
| 19 |
+
self.assertIn('col1', df.columns) # Check if 'col1' exists in columns
|
| 20 |
+
|
| 21 |
+
# Simulate fine-tuning process
|
| 22 |
+
result = fine_tune_model(df) # Assuming you have a fine-tune function
|
| 23 |
+
|
| 24 |
+
# Check that the model fine-tuned successfully
|
| 25 |
+
self.assertTrue(result) # Assuming result is True on success
|
| 26 |
+
|
| 27 |
+
if __name__ == '__main__':
|
| 28 |
+
unittest.main()
|