Spaces:
Running
on
Zero
Running
on
Zero
width n height
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import random
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
import spaces
|
|
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import huggingface_hub
|
|
@@ -11,6 +12,10 @@ from src.pipeline_flux_nag import NAGFluxPipeline
|
|
| 11 |
from src.transformer_flux import NAGFluxTransformer2DModel
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
theme = gr.themes.Base(
|
| 15 |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
| 16 |
)
|
|
@@ -31,8 +36,7 @@ pipe = pipe.to(device)
|
|
| 31 |
|
| 32 |
examples = [
|
| 33 |
["Portrait of AI researcher.", "Glasses.", 5],
|
| 34 |
-
["
|
| 35 |
-
["Minimalist abstract line drawing: face portrait of a girl with long hair.", "Complex, detail.", 7],
|
| 36 |
["A baby phoenix made of fire and flames is born from the smoking ashes.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5],
|
| 37 |
["A tiny astronaut hatching from an egg on the moon.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 9]
|
| 38 |
]
|
|
@@ -42,6 +46,7 @@ def sample(
|
|
| 42 |
prompt,
|
| 43 |
negative_prompt=None, guidance_scale=3.5,
|
| 44 |
nag_negative_prompt=None, nag_scale=5.0,
|
|
|
|
| 45 |
num_inference_steps=25,
|
| 46 |
seed=2025, randomize_seed=False,
|
| 47 |
compare=True,
|
|
@@ -49,10 +54,11 @@ def sample(
|
|
| 49 |
prompt = prompt.strip()
|
| 50 |
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
|
| 51 |
guidance_scale = float(guidance_scale)
|
|
|
|
| 52 |
num_inference_steps = int(num_inference_steps)
|
| 53 |
|
| 54 |
if (randomize_seed):
|
| 55 |
-
seed = random.randint(0,
|
| 56 |
else:
|
| 57 |
seed = int(seed)
|
| 58 |
|
|
@@ -64,6 +70,8 @@ def sample(
|
|
| 64 |
nag_negative_prompt=nag_negative_prompt,
|
| 65 |
nag_scale=nag_scale,
|
| 66 |
generator=generator,
|
|
|
|
|
|
|
| 67 |
num_inference_steps=num_inference_steps,
|
| 68 |
).images[0]
|
| 69 |
|
|
@@ -74,6 +82,8 @@ def sample(
|
|
| 74 |
negative_prompt=negative_prompt,
|
| 75 |
guidance_scale=guidance_scale,
|
| 76 |
generator=generator,
|
|
|
|
|
|
|
| 77 |
num_inference_steps=num_inference_steps,
|
| 78 |
).images[0]
|
| 79 |
else:
|
|
@@ -92,7 +102,7 @@ def sample_example(
|
|
| 92 |
nag_negative_prompt=nag_negative_prompt,
|
| 93 |
nag_scale=nag_scale,
|
| 94 |
)
|
| 95 |
-
return outputs, 3.5, 25, seed, True
|
| 96 |
|
| 97 |
|
| 98 |
css = '''
|
|
@@ -124,8 +134,23 @@ with gr.Blocks(css=css, theme=theme) as demo:
|
|
| 124 |
with gr.Accordion("Advanced Settings", open=False):
|
| 125 |
negative_prompt = gr.Textbox(label="Negative Prompt", value=None, visible=False)
|
| 126 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1., maximum=15., step=0.1, value=3.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25)
|
| 128 |
-
seed = gr.Slider(label="Seed", minimum=1, maximum=
|
| 129 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 130 |
|
| 131 |
gr.Examples(
|
|
@@ -136,7 +161,7 @@ with gr.Blocks(css=css, theme=theme) as demo:
|
|
| 136 |
nag_negative_prompt,
|
| 137 |
nag_scale,
|
| 138 |
],
|
| 139 |
-
outputs=[output, guidance_scale, num_inference_steps, seed, compare],
|
| 140 |
cache_examples="lazy",
|
| 141 |
)
|
| 142 |
|
|
@@ -150,6 +175,7 @@ with gr.Blocks(css=css, theme=theme) as demo:
|
|
| 150 |
prompt,
|
| 151 |
negative_prompt, guidance_scale,
|
| 152 |
nag_negative_prompt, nag_scale,
|
|
|
|
| 153 |
num_inference_steps,
|
| 154 |
seed, randomize_seed,
|
| 155 |
compare,
|
|
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
import spaces
|
| 5 |
+
import numpy as np
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
import huggingface_hub
|
|
|
|
| 12 |
from src.transformer_flux import NAGFluxTransformer2DModel
|
| 13 |
|
| 14 |
|
| 15 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
+
MAX_IMAGE_SIZE = 2048
|
| 17 |
+
|
| 18 |
+
|
| 19 |
theme = gr.themes.Base(
|
| 20 |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
| 21 |
)
|
|
|
|
| 36 |
|
| 37 |
examples = [
|
| 38 |
["Portrait of AI researcher.", "Glasses.", 5],
|
| 39 |
+
["Portrait of AI researcher.", "Male.", 5],
|
|
|
|
| 40 |
["A baby phoenix made of fire and flames is born from the smoking ashes.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5],
|
| 41 |
["A tiny astronaut hatching from an egg on the moon.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 9]
|
| 42 |
]
|
|
|
|
| 46 |
prompt,
|
| 47 |
negative_prompt=None, guidance_scale=3.5,
|
| 48 |
nag_negative_prompt=None, nag_scale=5.0,
|
| 49 |
+
width=1024, height=1024,
|
| 50 |
num_inference_steps=25,
|
| 51 |
seed=2025, randomize_seed=False,
|
| 52 |
compare=True,
|
|
|
|
| 54 |
prompt = prompt.strip()
|
| 55 |
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
|
| 56 |
guidance_scale = float(guidance_scale)
|
| 57 |
+
width, height = int(width), int(height)
|
| 58 |
num_inference_steps = int(num_inference_steps)
|
| 59 |
|
| 60 |
if (randomize_seed):
|
| 61 |
+
seed = random.randint(0, MAX_SEED)
|
| 62 |
else:
|
| 63 |
seed = int(seed)
|
| 64 |
|
|
|
|
| 70 |
nag_negative_prompt=nag_negative_prompt,
|
| 71 |
nag_scale=nag_scale,
|
| 72 |
generator=generator,
|
| 73 |
+
width=width,
|
| 74 |
+
height=height,
|
| 75 |
num_inference_steps=num_inference_steps,
|
| 76 |
).images[0]
|
| 77 |
|
|
|
|
| 82 |
negative_prompt=negative_prompt,
|
| 83 |
guidance_scale=guidance_scale,
|
| 84 |
generator=generator,
|
| 85 |
+
width=width,
|
| 86 |
+
height=height,
|
| 87 |
num_inference_steps=num_inference_steps,
|
| 88 |
).images[0]
|
| 89 |
else:
|
|
|
|
| 102 |
nag_negative_prompt=nag_negative_prompt,
|
| 103 |
nag_scale=nag_scale,
|
| 104 |
)
|
| 105 |
+
return outputs, 3.5, 1024, 1024, 25, seed, True
|
| 106 |
|
| 107 |
|
| 108 |
css = '''
|
|
|
|
| 134 |
with gr.Accordion("Advanced Settings", open=False):
|
| 135 |
negative_prompt = gr.Textbox(label="Negative Prompt", value=None, visible=False)
|
| 136 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1., maximum=15., step=0.1, value=3.5)
|
| 137 |
+
with gr.Row():
|
| 138 |
+
width = gr.Slider(
|
| 139 |
+
label="Width",
|
| 140 |
+
minimum=256,
|
| 141 |
+
maximum=MAX_IMAGE_SIZE,
|
| 142 |
+
step=32,
|
| 143 |
+
value=1024,
|
| 144 |
+
)
|
| 145 |
+
height = gr.Slider(
|
| 146 |
+
label="Height",
|
| 147 |
+
minimum=256,
|
| 148 |
+
maximum=MAX_IMAGE_SIZE,
|
| 149 |
+
step=32,
|
| 150 |
+
value=1024,
|
| 151 |
+
)
|
| 152 |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25)
|
| 153 |
+
seed = gr.Slider(label="Seed", minimum=1, maximum=MAX_SEED, step=1, randomize=True)
|
| 154 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 155 |
|
| 156 |
gr.Examples(
|
|
|
|
| 161 |
nag_negative_prompt,
|
| 162 |
nag_scale,
|
| 163 |
],
|
| 164 |
+
outputs=[output, guidance_scale, width, height, num_inference_steps, seed, compare],
|
| 165 |
cache_examples="lazy",
|
| 166 |
)
|
| 167 |
|
|
|
|
| 175 |
prompt,
|
| 176 |
negative_prompt, guidance_scale,
|
| 177 |
nag_negative_prompt, nag_scale,
|
| 178 |
+
width, height,
|
| 179 |
num_inference_steps,
|
| 180 |
seed, randomize_seed,
|
| 181 |
compare,
|