Commit
·
9738813
1
Parent(s):
81917a3
The initial update from Qi, solved 2 questions for the timebeing
Browse files- .gitignore +40 -0
- agent.py +208 -0
- app.py +41 -14
- requirements.txt +8 -1
.gitignore
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
|
| 28 |
+
# Environment variables
|
| 29 |
+
.env
|
| 30 |
+
.env.local
|
| 31 |
+
|
| 32 |
+
# IDE
|
| 33 |
+
.vscode/
|
| 34 |
+
.idea/
|
| 35 |
+
*.swp
|
| 36 |
+
*.swo
|
| 37 |
+
|
| 38 |
+
# OS
|
| 39 |
+
.DS_Store
|
| 40 |
+
Thumbs.db
|
agent.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import TypedDict, Annotated
|
| 2 |
+
import os
|
| 3 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
| 4 |
+
from langchain_community.document_loaders import WikipediaLoader, YoutubeLoader
|
| 5 |
+
from langchain_community.document_loaders.youtube import TranscriptFormat
|
| 6 |
+
from pytube import YouTube
|
| 7 |
+
from langgraph.graph.message import add_messages
|
| 8 |
+
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
|
| 9 |
+
from langgraph.prebuilt import ToolNode
|
| 10 |
+
from langchain_openai import ChatOpenAI
|
| 11 |
+
from langgraph.graph import START, StateGraph
|
| 12 |
+
from langfuse.langchain import CallbackHandler
|
| 13 |
+
from langgraph.prebuilt import tools_condition
|
| 14 |
+
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
| 15 |
+
from langchain_core.tools import tool
|
| 16 |
+
|
| 17 |
+
# Web search tool using DuckDuckGo
|
| 18 |
+
search_tool = DuckDuckGoSearchRun()
|
| 19 |
+
|
| 20 |
+
# Create Wikipedia search tool using WikipediaLoader
|
| 21 |
+
@tool
|
| 22 |
+
def search_wikipedia(query: str) -> str:
|
| 23 |
+
"""Search Wikipedia for information about a topic.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
query: The search query or topic to look up on Wikipedia
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
str: The Wikipedia content related to the query
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
# Load Wikipedia documents for the query
|
| 33 |
+
loader = WikipediaLoader(query=query, load_max_docs=2)
|
| 34 |
+
docs = loader.load()
|
| 35 |
+
|
| 36 |
+
if not docs:
|
| 37 |
+
return f"No Wikipedia articles found for query: {query}"
|
| 38 |
+
|
| 39 |
+
# Combine the content from the documents
|
| 40 |
+
content = ""
|
| 41 |
+
for doc in docs:
|
| 42 |
+
content += f"Title: {doc.metadata.get('title', 'Unknown')}\n"
|
| 43 |
+
content += f"Content: {doc.page_content}...\n\n"
|
| 44 |
+
|
| 45 |
+
return content
|
| 46 |
+
except Exception as e:
|
| 47 |
+
return f"Error searching Wikipedia: {str(e)}"
|
| 48 |
+
|
| 49 |
+
# Create YouTube transcript analysis tool
|
| 50 |
+
@tool
|
| 51 |
+
def analyze_youtube_video(video_url: str) -> str:
|
| 52 |
+
"""Analyze a YouTube video by loading and processing its transcript.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
video_url: The YouTube video URL to analyze
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
str: The transcript content of the YouTube video
|
| 59 |
+
"""
|
| 60 |
+
# try:
|
| 61 |
+
# # Method 1: Try with basic YoutubeLoader first
|
| 62 |
+
# try:
|
| 63 |
+
# loader = YoutubeLoader.from_youtube_url(
|
| 64 |
+
# video_url,
|
| 65 |
+
# add_video_info=True,
|
| 66 |
+
# language=["en", "en-US", "en-GB"] # Try multiple English variants
|
| 67 |
+
# )
|
| 68 |
+
# docs = loader.load()
|
| 69 |
+
|
| 70 |
+
# if docs:
|
| 71 |
+
# content = ""
|
| 72 |
+
# for doc in docs:
|
| 73 |
+
# title = doc.metadata.get('title', 'Unknown Video')
|
| 74 |
+
# author = doc.metadata.get('author', 'Unknown Author')
|
| 75 |
+
# length = doc.metadata.get('length', 'Unknown')
|
| 76 |
+
|
| 77 |
+
# content += f"Video Title: {title}\n"
|
| 78 |
+
# content += f"Author: {author}\n"
|
| 79 |
+
# content += f"Length: {length} seconds\n"
|
| 80 |
+
# content += f"Transcript:\n{doc.page_content}\n\n"
|
| 81 |
+
|
| 82 |
+
# return content
|
| 83 |
+
# except Exception as e1:
|
| 84 |
+
# print(f"Method 1 failed: {e1}")
|
| 85 |
+
|
| 86 |
+
# Method 2: Try without video info
|
| 87 |
+
# try:
|
| 88 |
+
# loader = YoutubeLoader.from_youtube_url(
|
| 89 |
+
# video_url,
|
| 90 |
+
# add_video_info=False,
|
| 91 |
+
# language=["en"]
|
| 92 |
+
# )
|
| 93 |
+
# docs = loader.load()
|
| 94 |
+
|
| 95 |
+
# if docs:
|
| 96 |
+
# content = f"Video URL: {video_url}\n"
|
| 97 |
+
# content += f"Transcript:\n{docs[0].page_content}\n\n"
|
| 98 |
+
# return content
|
| 99 |
+
# except Exception as e2:
|
| 100 |
+
# print(f"Method 2 failed: {e2}")
|
| 101 |
+
|
| 102 |
+
# # Method 3: Try with chunked format
|
| 103 |
+
try:
|
| 104 |
+
loader = YoutubeLoader.from_youtube_url(
|
| 105 |
+
video_url,
|
| 106 |
+
add_video_info=False,
|
| 107 |
+
transcript_format=TranscriptFormat.CHUNKS,
|
| 108 |
+
chunk_size_seconds=60
|
| 109 |
+
)
|
| 110 |
+
docs = loader.load()
|
| 111 |
+
|
| 112 |
+
if docs:
|
| 113 |
+
content = f"Video URL: {video_url}\n"
|
| 114 |
+
content += "Transcript (Chunked):\n"
|
| 115 |
+
for i, doc in enumerate(docs[:5]): # Limit to first 5 chunks
|
| 116 |
+
content += f"Chunk {i+1}: {doc.page_content}\n"
|
| 117 |
+
return content
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f"Analyze video failed: {e}")
|
| 120 |
+
|
| 121 |
+
# Initialize Langfuse CallbackHandler globally
|
| 122 |
+
def get_langfuse_handler():
|
| 123 |
+
"""Get configured Langfuse handler"""
|
| 124 |
+
# Langfuse will automatically read LANGFUSE_PUBLIC_KEY, LANGFUSE_SECRET_KEY, and LANGFUSE_HOST from environment
|
| 125 |
+
return CallbackHandler()
|
| 126 |
+
|
| 127 |
+
def build_jasper():
|
| 128 |
+
# Generate the chat interface, including the tools
|
| 129 |
+
# llm = HuggingFaceEndpoint(
|
| 130 |
+
# repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 131 |
+
# huggingfacehub_api_token=os.getenv("HUGGINGFACE_API_TOKEN"),
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
tools = [search_tool, search_wikipedia, analyze_youtube_video]
|
| 135 |
+
|
| 136 |
+
# llm = HuggingFaceEndpoint(
|
| 137 |
+
# repo_id="Qwen/Qwen2.5-Omni-3B",
|
| 138 |
+
# huggingfacehub_api_token=os.getenv("HUGGINGFACE_API_TOKEN"),
|
| 139 |
+
# )
|
| 140 |
+
# chat = ChatHuggingFace(llm=llm, verbose=True)
|
| 141 |
+
# chat_with_tools = chat.bind_tools(tools)
|
| 142 |
+
|
| 143 |
+
# Set your OpenAI API key here
|
| 144 |
+
llm = ChatOpenAI(
|
| 145 |
+
model="gpt-4o",
|
| 146 |
+
temperature=0,
|
| 147 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
| 148 |
+
)
|
| 149 |
+
chat_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Generate the AgentState and Agent graph
|
| 153 |
+
class AgentState(TypedDict):
|
| 154 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def assistant(state: AgentState):
|
| 158 |
+
return {
|
| 159 |
+
"messages": [chat_with_tools.invoke(state["messages"])],
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
## The graph
|
| 163 |
+
builder = StateGraph(AgentState)
|
| 164 |
+
|
| 165 |
+
# Define nodes: these do the work
|
| 166 |
+
builder.add_node("assistant", assistant)
|
| 167 |
+
builder.add_node("tools", ToolNode(tools))
|
| 168 |
+
|
| 169 |
+
# Define edges: these determine how the control flow moves
|
| 170 |
+
builder.add_edge(START, "assistant")
|
| 171 |
+
builder.add_conditional_edges(
|
| 172 |
+
"assistant",
|
| 173 |
+
# If the latest message requires a tool, route to tools
|
| 174 |
+
# Otherwise, provide a direct response
|
| 175 |
+
tools_condition,
|
| 176 |
+
)
|
| 177 |
+
builder.add_edge("tools", "assistant")
|
| 178 |
+
|
| 179 |
+
# Compile the graph without callback parameter
|
| 180 |
+
jasper = builder.compile()
|
| 181 |
+
print("Langfuse tracing enabled - traces will be available in your Langfuse dashboard")
|
| 182 |
+
return jasper
|
| 183 |
+
|
| 184 |
+
def run_jasper():
|
| 185 |
+
jasper = build_jasper()
|
| 186 |
+
messages = [HumanMessage(content="Examine the video at https://www.youtube.com/watch?v=1htKBjuUWec.\n\nWhat does Teal'c say in response to the question \"Isn't that hot?\"")]
|
| 187 |
+
|
| 188 |
+
# Get Langfuse handler for tracing
|
| 189 |
+
langfuse_handler = get_langfuse_handler()
|
| 190 |
+
|
| 191 |
+
# Add trace metadata for this specific run
|
| 192 |
+
response = jasper.invoke(
|
| 193 |
+
{"messages": messages},
|
| 194 |
+
config={
|
| 195 |
+
"callbacks": [langfuse_handler],
|
| 196 |
+
"metadata": {
|
| 197 |
+
"trace_name": "YouTube_Video_Analysis",
|
| 198 |
+
"user_id": "jasper-user",
|
| 199 |
+
"session_id": "jasper-agent-session"
|
| 200 |
+
}
|
| 201 |
+
}
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
print("Jasper's Response:")
|
| 205 |
+
print(response['messages'][-1].content)
|
| 206 |
+
|
| 207 |
+
if __name__ == "__main__":
|
| 208 |
+
run_jasper()
|
app.py
CHANGED
|
@@ -3,25 +3,49 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
-
# ---
|
| 12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
-
class
|
| 14 |
def __init__(self):
|
| 15 |
-
print("
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
"""
|
| 24 |
-
Fetches all questions, runs the
|
| 25 |
and displays the results.
|
| 26 |
"""
|
| 27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
|
@@ -40,7 +64,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 40 |
|
| 41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
-
agent =
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
|
@@ -80,7 +104,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 80 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
continue
|
| 82 |
try:
|
| 83 |
-
|
|
|
|
| 84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 86 |
except Exception as e:
|
|
@@ -107,7 +132,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 107 |
f"User: {result_data.get('username')}\n"
|
| 108 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 109 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
|
|
|
| 111 |
)
|
| 112 |
print("Submission successful.")
|
| 113 |
results_df = pd.DataFrame(results_log)
|
|
@@ -142,7 +168,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 142 |
|
| 143 |
# --- Build Gradio Interface using Blocks ---
|
| 144 |
with gr.Blocks() as demo:
|
| 145 |
-
gr.Markdown("#
|
| 146 |
gr.Markdown(
|
| 147 |
"""
|
| 148 |
**Instructions:**
|
|
@@ -150,6 +176,7 @@ with gr.Blocks() as demo:
|
|
| 150 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 151 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 152 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
| 153 |
|
| 154 |
---
|
| 155 |
**Disclaimers:**
|
|
@@ -192,5 +219,5 @@ if __name__ == "__main__":
|
|
| 192 |
|
| 193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
|
| 195 |
-
print("Launching Gradio Interface for
|
| 196 |
demo.launch(debug=True, share=False)
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
from agent import build_jasper, get_langfuse_handler
|
| 7 |
+
from langchain_core.messages import HumanMessage
|
| 8 |
|
| 9 |
# (Keep Constants as is)
|
| 10 |
# --- Constants ---
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
|
| 13 |
+
# --- Jasper Agent Definition ---
|
| 14 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 15 |
+
class JasperAgent:
|
| 16 |
def __init__(self):
|
| 17 |
+
print("JasperAgent initialized.")
|
| 18 |
+
self.jasper = build_jasper()
|
| 19 |
+
self.langfuse_handler = get_langfuse_handler()
|
| 20 |
+
|
| 21 |
+
def __call__(self, question: str, task_id: str = None) -> str:
|
| 22 |
+
print(f"Agent received question: {question}.")
|
| 23 |
+
try:
|
| 24 |
+
messages = [HumanMessage(content=question)]
|
| 25 |
+
|
| 26 |
+
# Add Langfuse tracing metadata
|
| 27 |
+
config = {
|
| 28 |
+
"callbacks": [self.langfuse_handler],
|
| 29 |
+
"metadata": {
|
| 30 |
+
"trace_name": f"Evaluation_Task_{task_id}" if task_id else "Agent_Query",
|
| 31 |
+
"user_id": "evaluation-user",
|
| 32 |
+
"session_id": "evaluation-session",
|
| 33 |
+
"task_id": task_id,
|
| 34 |
+
"question_preview": question
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
response = self.jasper.invoke({"messages": messages}, config=config)
|
| 39 |
+
answer = response['messages'][-1].content
|
| 40 |
+
print(f"Agent returning answer: {answer}.")
|
| 41 |
+
return answer
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error in agent processing: {e}")
|
| 44 |
+
return f"Error processing question: {str(e)}"
|
| 45 |
|
| 46 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 47 |
"""
|
| 48 |
+
Fetches all questions, runs the JasperAgent on them, submits all answers,
|
| 49 |
and displays the results.
|
| 50 |
"""
|
| 51 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
|
|
|
| 64 |
|
| 65 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 66 |
try:
|
| 67 |
+
agent = JasperAgent()
|
| 68 |
except Exception as e:
|
| 69 |
print(f"Error instantiating agent: {e}")
|
| 70 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 104 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 105 |
continue
|
| 106 |
try:
|
| 107 |
+
# Pass task_id for better tracing
|
| 108 |
+
submitted_answer = agent(question_text, task_id=task_id)
|
| 109 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 110 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 111 |
except Exception as e:
|
|
|
|
| 132 |
f"User: {result_data.get('username')}\n"
|
| 133 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 134 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 135 |
+
f"Message: {result_data.get('message', 'No message received.')}\n"
|
| 136 |
+
f"📊 View detailed traces in your Langfuse dashboard"
|
| 137 |
)
|
| 138 |
print("Submission successful.")
|
| 139 |
results_df = pd.DataFrame(results_log)
|
|
|
|
| 168 |
|
| 169 |
# --- Build Gradio Interface using Blocks ---
|
| 170 |
with gr.Blocks() as demo:
|
| 171 |
+
gr.Markdown("# Jasper Agent Evaluation Runner")
|
| 172 |
gr.Markdown(
|
| 173 |
"""
|
| 174 |
**Instructions:**
|
|
|
|
| 176 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 177 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 178 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 179 |
+
4. **Langfuse Tracing**: All agent operations are traced with Langfuse for detailed analysis and debugging.
|
| 180 |
|
| 181 |
---
|
| 182 |
**Disclaimers:**
|
|
|
|
| 219 |
|
| 220 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 221 |
|
| 222 |
+
print("Launching Gradio Interface for Jasper Agent Evaluation...")
|
| 223 |
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
|
@@ -1,2 +1,9 @@
|
|
| 1 |
gradio
|
| 2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
+
requests
|
| 3 |
+
langchain-community
|
| 4 |
+
langchain-huggingface
|
| 5 |
+
langgraph
|
| 6 |
+
langfuse
|
| 7 |
+
langchain-openai
|
| 8 |
+
youtube-transcript-api
|
| 9 |
+
pytube
|