Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,8 +17,19 @@ from langchain_text_splitters import (
|
|
| 17 |
)
|
| 18 |
from typing import List, Dict, Any
|
| 19 |
import pandas as pd
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
nltk.download('punkt', quiet=True)
|
| 23 |
|
| 24 |
FILES_DIR = './files'
|
|
@@ -39,6 +50,34 @@ MODELS = {
|
|
| 39 |
}
|
| 40 |
}
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
class FileHandler:
|
| 43 |
@staticmethod
|
| 44 |
def extract_text(file_path):
|
|
@@ -89,23 +128,26 @@ def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separator
|
|
| 89 |
else:
|
| 90 |
raise ValueError(f"Unsupported split strategy: {split_strategy}")
|
| 91 |
|
| 92 |
-
def get_vector_store(
|
| 93 |
-
if
|
| 94 |
-
return FAISS.from_texts(
|
| 95 |
-
elif
|
| 96 |
-
return Chroma.from_texts(
|
| 97 |
else:
|
| 98 |
-
raise ValueError(f"Unsupported vector store type: {
|
| 99 |
|
| 100 |
-
def get_retriever(vector_store, search_type, search_kwargs
|
| 101 |
if search_type == 'similarity':
|
| 102 |
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
| 103 |
elif search_type == 'mmr':
|
| 104 |
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
|
|
|
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
raise ValueError(f"Unsupported search type: {search_type}")
|
| 107 |
|
| 108 |
-
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators):
|
| 109 |
if file_path:
|
| 110 |
text = FileHandler.extract_text(file_path)
|
| 111 |
else:
|
|
@@ -113,6 +155,9 @@ def process_files(file_path, model_type, model_name, split_strategy, chunk_size,
|
|
| 113 |
for file in os.listdir(FILES_DIR):
|
| 114 |
file_path = os.path.join(FILES_DIR, file)
|
| 115 |
text += FileHandler.extract_text(file_path)
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
|
| 118 |
chunks = text_splitter.split_text(text)
|
|
@@ -121,15 +166,24 @@ def process_files(file_path, model_type, model_name, split_strategy, chunk_size,
|
|
| 121 |
|
| 122 |
return chunks, embedding_model, len(text.split())
|
| 123 |
|
| 124 |
-
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k):
|
|
|
|
|
|
|
|
|
|
| 125 |
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
|
| 126 |
retriever = get_retriever(vector_store, search_type, {"k": top_k})
|
| 127 |
|
| 128 |
start_time = time.time()
|
| 129 |
-
results = retriever.get_relevant_documents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
end_time = time.time()
|
| 131 |
|
| 132 |
-
return results, end_time - start_time, vector_store
|
| 133 |
|
| 134 |
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model):
|
| 135 |
return {
|
|
@@ -142,7 +196,47 @@ def calculate_statistics(results, search_time, vector_store, num_tokens, embeddi
|
|
| 142 |
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A"
|
| 143 |
}
|
| 144 |
|
| 145 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
all_results = []
|
| 147 |
all_stats = []
|
| 148 |
settings = {
|
|
@@ -152,7 +246,11 @@ def compare_embeddings(file, query, model_types, model_names, split_strategy, ch
|
|
| 152 |
"custom_separators": custom_separators,
|
| 153 |
"vector_store_type": vector_store_type,
|
| 154 |
"search_type": search_type,
|
| 155 |
-
"top_k": top_k
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
}
|
| 157 |
|
| 158 |
for model_type, model_name in zip(model_types, model_names):
|
|
@@ -163,16 +261,27 @@ def compare_embeddings(file, query, model_types, model_names, split_strategy, ch
|
|
| 163 |
split_strategy,
|
| 164 |
chunk_size,
|
| 165 |
overlap_size,
|
| 166 |
-
custom_separators.split(',') if custom_separators else None
|
|
|
|
| 167 |
)
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
results, search_time, vector_store = search_embeddings(
|
| 170 |
chunks,
|
| 171 |
embedding_model,
|
| 172 |
vector_store_type,
|
| 173 |
search_type,
|
| 174 |
query,
|
| 175 |
-
top_k
|
|
|
|
|
|
|
| 176 |
)
|
| 177 |
|
| 178 |
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model)
|
|
@@ -200,39 +309,38 @@ def format_results(results, stats):
|
|
| 200 |
formatted_results.append(result)
|
| 201 |
return formatted_results
|
| 202 |
|
| 203 |
-
# Gradio interface
|
| 204 |
def launch_interface(share=True):
|
| 205 |
iface = gr.Interface(
|
| 206 |
fn=compare_embeddings,
|
| 207 |
inputs=[
|
| 208 |
gr.File(label="Upload File (Optional)"),
|
| 209 |
gr.Textbox(label="Search Query"),
|
| 210 |
-
gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types"
|
| 211 |
-
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models"
|
| 212 |
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
|
| 213 |
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
|
| 214 |
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
|
| 215 |
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
|
| 216 |
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
|
| 217 |
-
gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"),
|
| 218 |
-
gr.Slider(1, 10, step=1, value=5, label="Top K")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
],
|
| 220 |
outputs=[
|
| 221 |
gr.Dataframe(label="Results", interactive=False),
|
| 222 |
gr.Dataframe(label="Statistics", interactive=False)
|
| 223 |
],
|
| 224 |
-
title="Embedding Comparison Tool",
|
| 225 |
-
description="Compare different embedding models and retrieval strategies"
|
| 226 |
-
examples=[
|
| 227 |
-
["files/test.txt", "What is machine learning?", ["HuggingFace"], ["e5-base-de"], "recursive", 500, 50, "", "FAISS", "similarity", 5]
|
| 228 |
-
],
|
| 229 |
-
allow_flagging="never"
|
| 230 |
)
|
| 231 |
|
| 232 |
tutorial_md = """
|
| 233 |
-
# Embedding Comparison Tool Tutorial
|
| 234 |
|
| 235 |
-
... (tutorial
|
| 236 |
"""
|
| 237 |
|
| 238 |
iface = gr.TabbedInterface(
|
|
|
|
| 17 |
)
|
| 18 |
from typing import List, Dict, Any
|
| 19 |
import pandas as pd
|
| 20 |
+
import re
|
| 21 |
+
from nltk.corpus import stopwords
|
| 22 |
+
from nltk.tokenize import word_tokenize
|
| 23 |
+
from nltk.stem import SnowballStemmer
|
| 24 |
+
import jellyfish # For Kölner Phonetik
|
| 25 |
+
from gensim.models import Word2Vec
|
| 26 |
+
from gensim.models.fasttext import FastText
|
| 27 |
+
from collections import Counter
|
| 28 |
+
from tokenizers import Tokenizer
|
| 29 |
+
from tokenizers.models import BPE
|
| 30 |
+
from tokenizers.trainers import BpeTrainer
|
| 31 |
+
|
| 32 |
+
nltk.download('stopwords', quiet=True)
|
| 33 |
nltk.download('punkt', quiet=True)
|
| 34 |
|
| 35 |
FILES_DIR = './files'
|
|
|
|
| 50 |
}
|
| 51 |
}
|
| 52 |
|
| 53 |
+
def preprocess_text(text, lang='german'):
|
| 54 |
+
# Convert to lowercase
|
| 55 |
+
text = text.lower()
|
| 56 |
+
|
| 57 |
+
# Remove special characters and digits
|
| 58 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 59 |
+
|
| 60 |
+
# Tokenize
|
| 61 |
+
tokens = word_tokenize(text, language=lang)
|
| 62 |
+
|
| 63 |
+
# Remove stopwords
|
| 64 |
+
stop_words = set(stopwords.words(lang))
|
| 65 |
+
tokens = [token for token in tokens if token not in stop_words]
|
| 66 |
+
|
| 67 |
+
# Stemming
|
| 68 |
+
stemmer = SnowballStemmer(lang)
|
| 69 |
+
tokens = [stemmer.stem(token) for token in tokens]
|
| 70 |
+
|
| 71 |
+
return ' '.join(tokens)
|
| 72 |
+
|
| 73 |
+
def phonetic_match(text, query, method='koelner_phonetik'):
|
| 74 |
+
if method == 'koelner_phonetik':
|
| 75 |
+
text_phonetic = jellyfish.cologne_phonetic(text)
|
| 76 |
+
query_phonetic = jellyfish.cologne_phonetic(query)
|
| 77 |
+
return jellyfish.jaro_winkler(text_phonetic, query_phonetic)
|
| 78 |
+
# Add other phonetic methods as needed
|
| 79 |
+
return 0
|
| 80 |
+
|
| 81 |
class FileHandler:
|
| 82 |
@staticmethod
|
| 83 |
def extract_text(file_path):
|
|
|
|
| 128 |
else:
|
| 129 |
raise ValueError(f"Unsupported split strategy: {split_strategy}")
|
| 130 |
|
| 131 |
+
def get_vector_store(vector_store_type, chunks, embedding_model):
|
| 132 |
+
if vector_store_type == 'FAISS':
|
| 133 |
+
return FAISS.from_texts(chunks, embedding_model)
|
| 134 |
+
elif vector_store_type == 'Chroma':
|
| 135 |
+
return Chroma.from_texts(chunks, embedding_model)
|
| 136 |
else:
|
| 137 |
+
raise ValueError(f"Unsupported vector store type: {vector_store_type}")
|
| 138 |
|
| 139 |
+
def get_retriever(vector_store, search_type, search_kwargs):
|
| 140 |
if search_type == 'similarity':
|
| 141 |
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
|
| 142 |
elif search_type == 'mmr':
|
| 143 |
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
|
| 144 |
+
elif search_type == 'custom':
|
| 145 |
+
# Implement custom retriever logic here
|
| 146 |
+
pass
|
| 147 |
else:
|
| 148 |
raise ValueError(f"Unsupported search type: {search_type}")
|
| 149 |
|
| 150 |
+
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german'):
|
| 151 |
if file_path:
|
| 152 |
text = FileHandler.extract_text(file_path)
|
| 153 |
else:
|
|
|
|
| 155 |
for file in os.listdir(FILES_DIR):
|
| 156 |
file_path = os.path.join(FILES_DIR, file)
|
| 157 |
text += FileHandler.extract_text(file_path)
|
| 158 |
+
|
| 159 |
+
# Preprocess the text
|
| 160 |
+
text = preprocess_text(text, lang)
|
| 161 |
|
| 162 |
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
|
| 163 |
chunks = text_splitter.split_text(text)
|
|
|
|
| 166 |
|
| 167 |
return chunks, embedding_model, len(text.split())
|
| 168 |
|
| 169 |
+
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3):
|
| 170 |
+
# Preprocess the query
|
| 171 |
+
preprocessed_query = preprocess_text(query, lang)
|
| 172 |
+
|
| 173 |
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
|
| 174 |
retriever = get_retriever(vector_store, search_type, {"k": top_k})
|
| 175 |
|
| 176 |
start_time = time.time()
|
| 177 |
+
results = retriever.get_relevant_documents(preprocessed_query)
|
| 178 |
+
|
| 179 |
+
# Apply phonetic matching
|
| 180 |
+
results = sorted(results, key=lambda x: (1 - phonetic_weight) * vector_store.similarity_search(x.page_content, k=1)[0][1] +
|
| 181 |
+
phonetic_weight * phonetic_match(x.page_content, query),
|
| 182 |
+
reverse=True)
|
| 183 |
+
|
| 184 |
end_time = time.time()
|
| 185 |
|
| 186 |
+
return results[:top_k], end_time - start_time, vector_store
|
| 187 |
|
| 188 |
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model):
|
| 189 |
return {
|
|
|
|
| 196 |
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A"
|
| 197 |
}
|
| 198 |
|
| 199 |
+
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
|
| 200 |
+
# Tokenize the texts
|
| 201 |
+
tokenized_texts = [text.split() for text in texts]
|
| 202 |
+
|
| 203 |
+
if model_type == 'word2vec':
|
| 204 |
+
model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
|
| 205 |
+
elif model_type == 'fasttext':
|
| 206 |
+
model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
|
| 207 |
+
else:
|
| 208 |
+
raise ValueError("Unsupported model type")
|
| 209 |
+
|
| 210 |
+
return model
|
| 211 |
+
|
| 212 |
+
class CustomEmbeddings(HuggingFaceEmbeddings):
|
| 213 |
+
def __init__(self, model_path):
|
| 214 |
+
self.model = Word2Vec.load(model_path) # or FastText.load() for FastText models
|
| 215 |
+
|
| 216 |
+
def embed_documents(self, texts):
|
| 217 |
+
return [self.model.wv[text.split()] for text in texts]
|
| 218 |
+
|
| 219 |
+
def embed_query(self, text):
|
| 220 |
+
return self.model.wv[text.split()]
|
| 221 |
+
|
| 222 |
+
def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
|
| 223 |
+
# Count word frequencies
|
| 224 |
+
word_freq = Counter(word for text in texts for word in text.split())
|
| 225 |
+
|
| 226 |
+
# Remove rare words
|
| 227 |
+
optimized_texts = [
|
| 228 |
+
' '.join(word for word in text.split() if word_freq[word] >= min_frequency)
|
| 229 |
+
for text in texts
|
| 230 |
+
]
|
| 231 |
+
|
| 232 |
+
# Train BPE tokenizer
|
| 233 |
+
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
|
| 234 |
+
trainer = BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
|
| 235 |
+
tokenizer.train_from_iterator(optimized_texts, trainer)
|
| 236 |
+
|
| 237 |
+
return tokenizer, optimized_texts
|
| 238 |
+
|
| 239 |
+
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang, use_custom_embedding, optimize_vocab, phonetic_weight):
|
| 240 |
all_results = []
|
| 241 |
all_stats = []
|
| 242 |
settings = {
|
|
|
|
| 246 |
"custom_separators": custom_separators,
|
| 247 |
"vector_store_type": vector_store_type,
|
| 248 |
"search_type": search_type,
|
| 249 |
+
"top_k": top_k,
|
| 250 |
+
"lang": lang,
|
| 251 |
+
"use_custom_embedding": use_custom_embedding,
|
| 252 |
+
"optimize_vocab": optimize_vocab,
|
| 253 |
+
"phonetic_weight": phonetic_weight
|
| 254 |
}
|
| 255 |
|
| 256 |
for model_type, model_name in zip(model_types, model_names):
|
|
|
|
| 261 |
split_strategy,
|
| 262 |
chunk_size,
|
| 263 |
overlap_size,
|
| 264 |
+
custom_separators.split(',') if custom_separators else None,
|
| 265 |
+
lang
|
| 266 |
)
|
| 267 |
|
| 268 |
+
if use_custom_embedding:
|
| 269 |
+
custom_model = create_custom_embedding(chunks)
|
| 270 |
+
embedding_model = CustomEmbeddings(custom_model)
|
| 271 |
+
|
| 272 |
+
if optimize_vocab:
|
| 273 |
+
tokenizer, optimized_chunks = optimize_vocabulary(chunks)
|
| 274 |
+
chunks = optimized_chunks
|
| 275 |
+
|
| 276 |
results, search_time, vector_store = search_embeddings(
|
| 277 |
chunks,
|
| 278 |
embedding_model,
|
| 279 |
vector_store_type,
|
| 280 |
search_type,
|
| 281 |
query,
|
| 282 |
+
top_k,
|
| 283 |
+
lang,
|
| 284 |
+
phonetic_weight
|
| 285 |
)
|
| 286 |
|
| 287 |
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model)
|
|
|
|
| 309 |
formatted_results.append(result)
|
| 310 |
return formatted_results
|
| 311 |
|
|
|
|
| 312 |
def launch_interface(share=True):
|
| 313 |
iface = gr.Interface(
|
| 314 |
fn=compare_embeddings,
|
| 315 |
inputs=[
|
| 316 |
gr.File(label="Upload File (Optional)"),
|
| 317 |
gr.Textbox(label="Search Query"),
|
| 318 |
+
gr.CheckboxGroup(choices=list(MODELS.keys()) + ["Custom"], label="Embedding Model Types"),
|
| 319 |
+
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models] + ["custom_model"], label="Embedding Models"),
|
| 320 |
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
|
| 321 |
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
|
| 322 |
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
|
| 323 |
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
|
| 324 |
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
|
| 325 |
+
gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"),
|
| 326 |
+
gr.Slider(1, 10, step=1, value=5, label="Top K"),
|
| 327 |
+
gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"),
|
| 328 |
+
gr.Checkbox(label="Use Custom Embedding", value=False),
|
| 329 |
+
gr.Checkbox(label="Optimize Vocabulary", value=False),
|
| 330 |
+
gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight")
|
| 331 |
],
|
| 332 |
outputs=[
|
| 333 |
gr.Dataframe(label="Results", interactive=False),
|
| 334 |
gr.Dataframe(label="Statistics", interactive=False)
|
| 335 |
],
|
| 336 |
+
title="Advanced Embedding Comparison Tool",
|
| 337 |
+
description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
)
|
| 339 |
|
| 340 |
tutorial_md = """
|
| 341 |
+
# Advanced Embedding Comparison Tool Tutorial
|
| 342 |
|
| 343 |
+
... (update the tutorial to include information about the new features) ...
|
| 344 |
"""
|
| 345 |
|
| 346 |
iface = gr.TabbedInterface(
|