Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,35 +54,37 @@ model_pipeline = pipeline(
|
|
| 54 |
)
|
| 55 |
|
| 56 |
# Use the pipeline in HuggingFacePipeline
|
| 57 |
-
|
| 58 |
|
| 59 |
##### Alternative
|
| 60 |
from transformers import pipeline
|
| 61 |
import torch
|
| 62 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 63 |
|
| 64 |
-
READER_MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
| 65 |
-
|
| 66 |
-
bnb_config = BitsAndBytesConfig(
|
| 67 |
-
load_in_4bit=True,
|
| 68 |
-
bnb_4bit_use_double_quant=True,
|
| 69 |
-
bnb_4bit_quant_type="nf4",
|
| 70 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 71 |
-
)
|
| 72 |
-
rmodel = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
|
| 73 |
-
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
| 74 |
-
|
| 75 |
-
llm = pipeline(
|
| 76 |
-
model=rmodel,
|
| 77 |
-
tokenizer=tokenizer,
|
| 78 |
-
task="text-generation",
|
| 79 |
-
do_sample=True,
|
| 80 |
-
temperature=0.2,
|
| 81 |
-
repetition_penalty=1.1,
|
| 82 |
-
return_full_text=False,
|
| 83 |
-
max_new_tokens=500,
|
| 84 |
-
)
|
| 85 |
#####
|
|
|
|
|
|
|
| 86 |
#repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 87 |
|
| 88 |
#llm_client = InferenceClient(model=repo_id, timeout=120)
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
# Use the pipeline in HuggingFacePipeline
|
| 57 |
+
llm = HuggingFacePipeline(pipeline=model_pipeline)
|
| 58 |
|
| 59 |
##### Alternative
|
| 60 |
from transformers import pipeline
|
| 61 |
import torch
|
| 62 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 63 |
|
| 64 |
+
#READER_MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
| 65 |
+
|
| 66 |
+
#bnb_config = BitsAndBytesConfig(
|
| 67 |
+
# load_in_4bit=True,
|
| 68 |
+
# bnb_4bit_use_double_quant=True,
|
| 69 |
+
# bnb_4bit_quant_type="nf4",
|
| 70 |
+
# bnb_4bit_compute_dtype=torch.bfloat16,
|
| 71 |
+
#)
|
| 72 |
+
#rmodel = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
|
| 73 |
+
#tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
| 74 |
+
|
| 75 |
+
#llm = pipeline(
|
| 76 |
+
# model=rmodel,
|
| 77 |
+
# tokenizer=tokenizer,
|
| 78 |
+
# task="text-generation",
|
| 79 |
+
# do_sample=True,
|
| 80 |
+
# temperature=0.2,
|
| 81 |
+
# repetition_penalty=1.1,
|
| 82 |
+
# return_full_text=False,
|
| 83 |
+
# max_new_tokens=500,
|
| 84 |
+
#)
|
| 85 |
#####
|
| 86 |
+
from huggingface_hub import InferenceClient
|
| 87 |
+
|
| 88 |
#repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 89 |
|
| 90 |
#llm_client = InferenceClient(model=repo_id, timeout=120)
|