Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -505,18 +505,64 @@ def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
|
|
| 505 |
|
| 506 |
return tokenizer, optimized_texts
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
if not hasattr(reranker, 'rerank'):
|
| 511 |
# For TextClassificationPipeline
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
else:
|
| 517 |
-
# For models with rerank method
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
# Main Comparison Function
|
| 521 |
def compare_embeddings(file, query, embedding_models, custom_embedding_model, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, expected_result=None, lang='german', apply_preprocessing=True, optimize_vocab=False, apply_phonetic=True, phonetic_weight=0.3, custom_tokenizer_file=None, custom_tokenizer_model=None, custom_tokenizer_vocab_size=10000, custom_tokenizer_special_tokens=None, use_query_optimization=False, query_optimization_model="google/flan-t5-base", use_reranking=False):
|
| 522 |
all_results = []
|
|
@@ -660,7 +706,9 @@ def automated_testing(file, query, test_params, expected_result=None):
|
|
| 660 |
chunks = optimized_chunks
|
| 661 |
|
| 662 |
if params['use_query_optimization']:
|
| 663 |
-
optimized_queries = optimize_query(query, params['query_optimization_model'])
|
|
|
|
|
|
|
| 664 |
query = " ".join(optimized_queries)
|
| 665 |
|
| 666 |
results, search_time, vector_store, results_raw = search_embeddings(
|
|
|
|
| 505 |
|
| 506 |
return tokenizer, optimized_texts
|
| 507 |
|
| 508 |
+
import numpy as np
|
| 509 |
+
from transformers import TextClassificationPipeline
|
| 510 |
+
from typing import List, Union, Any
|
| 511 |
+
|
| 512 |
+
def rerank_results(
|
| 513 |
+
results: List[Any],
|
| 514 |
+
query: str,
|
| 515 |
+
reranker: Union[TextClassificationPipeline, Any]
|
| 516 |
+
) -> List[Any]:
|
| 517 |
+
"""
|
| 518 |
+
Rerank search results using either a TextClassificationPipeline or a custom reranker.
|
| 519 |
+
|
| 520 |
+
Args:
|
| 521 |
+
results: List of documents/results to rerank
|
| 522 |
+
query: Search query string
|
| 523 |
+
reranker: Either a HuggingFace TextClassificationPipeline or a custom reranker
|
| 524 |
+
with a rerank() method
|
| 525 |
+
|
| 526 |
+
Returns:
|
| 527 |
+
List of reranked results
|
| 528 |
+
"""
|
| 529 |
+
if not results:
|
| 530 |
+
return results
|
| 531 |
+
|
| 532 |
if not hasattr(reranker, 'rerank'):
|
| 533 |
# For TextClassificationPipeline
|
| 534 |
+
try:
|
| 535 |
+
pairs = [[query, doc.page_content] for doc in results]
|
| 536 |
+
|
| 537 |
+
# Standard classification without specific function
|
| 538 |
+
predictions = reranker(pairs)
|
| 539 |
+
|
| 540 |
+
# Extract scores, defaulting to 'score' key but falling back to other common keys
|
| 541 |
+
scores = []
|
| 542 |
+
for pred in predictions:
|
| 543 |
+
if isinstance(pred, dict):
|
| 544 |
+
score = pred.get('score',
|
| 545 |
+
pred.get('probability',
|
| 546 |
+
pred.get('confidence', 0.0)))
|
| 547 |
+
else:
|
| 548 |
+
score = float(pred)
|
| 549 |
+
scores.append(score)
|
| 550 |
+
|
| 551 |
+
# Sort in descending order (higher scores = better matches)
|
| 552 |
+
reranked_idx = np.argsort(scores)[::-1]
|
| 553 |
+
return [results[i] for i in reranked_idx]
|
| 554 |
+
|
| 555 |
+
except Exception as e:
|
| 556 |
+
print(f"Warning: Reranking failed with error: {str(e)}")
|
| 557 |
+
return results
|
| 558 |
else:
|
| 559 |
+
# For models with dedicated rerank method
|
| 560 |
+
try:
|
| 561 |
+
return reranker.rerank(query, [doc.page_content for doc in results])
|
| 562 |
+
except Exception as e:
|
| 563 |
+
print(f"Warning: Custom reranking failed with error: {str(e)}")
|
| 564 |
+
return results
|
| 565 |
+
|
| 566 |
# Main Comparison Function
|
| 567 |
def compare_embeddings(file, query, embedding_models, custom_embedding_model, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, expected_result=None, lang='german', apply_preprocessing=True, optimize_vocab=False, apply_phonetic=True, phonetic_weight=0.3, custom_tokenizer_file=None, custom_tokenizer_model=None, custom_tokenizer_vocab_size=10000, custom_tokenizer_special_tokens=None, use_query_optimization=False, query_optimization_model="google/flan-t5-base", use_reranking=False):
|
| 568 |
all_results = []
|
|
|
|
| 706 |
chunks = optimized_chunks
|
| 707 |
|
| 708 |
if params['use_query_optimization']:
|
| 709 |
+
optimized_queries = optimize_query(query, params['query_optimization_model'], params['chunks'] , params['embedding_model'] , params['vector_store_type'] , params['search_type'] , params['top_k'] )
|
| 710 |
+
|
| 711 |
+
#optimized_queries = optimize_query(query, )
|
| 712 |
query = " ".join(optimized_queries)
|
| 713 |
|
| 714 |
results, search_time, vector_store, results_raw = search_embeddings(
|