Spaces:
Running
Running
Update sentiment_analysis.py
Browse files- sentiment_analysis.py +28 -25
sentiment_analysis.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import requests
|
|
|
|
|
|
|
| 2 |
|
| 3 |
class SentimentAnalysisTool:
|
| 4 |
name = "sentiment_analysis"
|
|
@@ -8,33 +10,34 @@ class SentimentAnalysisTool:
|
|
| 8 |
|
| 9 |
outputs = ["json"]
|
| 10 |
|
| 11 |
-
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
| 12 |
-
model_id_2 = "microsoft/deberta-xlarge-mnli"
|
| 13 |
-
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 14 |
-
model_id_4 = "lordtt13/emo-mobilebert"
|
| 15 |
-
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
| 16 |
-
model_id_6 = "sbcBI/sentiment_analysis_model"
|
| 17 |
-
model_id_7 = "models/oliverguhr/german-sentiment-bert"
|
| 18 |
-
|
| 19 |
-
def parse_output(output_json):
|
| 20 |
-
list_pred=[]
|
| 21 |
-
for i in range(len(output_json[0])):
|
| 22 |
-
label = output_json[0][i]['label']
|
| 23 |
-
score = output_json[0][i]['score']
|
| 24 |
-
list_pred.append((label, score))
|
| 25 |
-
return list_pred
|
| 26 |
-
|
| 27 |
-
def get_prediction(model_id):
|
| 28 |
-
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
| 29 |
-
|
| 30 |
-
def predicto(review):
|
| 31 |
-
classifier = SentimentAnalysisTool.get_prediction(SentimentAnalysisTool.model_id_7)
|
| 32 |
-
prediction = classifier(review)
|
| 33 |
-
print(prediction)
|
| 34 |
-
return SentimentAnalysisTool.parse_output(prediction)
|
| 35 |
-
|
| 36 |
def __call__(self, inputs: str):
|
| 37 |
return SentimentAnalysisTool.predicto(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
|
|
|
|
| 1 |
import requests
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
|
| 5 |
class SentimentAnalysisTool:
|
| 6 |
name = "sentiment_analysis"
|
|
|
|
| 10 |
|
| 11 |
outputs = ["json"]
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def __call__(self, inputs: str):
|
| 14 |
return SentimentAnalysisTool.predicto(str)
|
| 15 |
+
|
| 16 |
+
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
| 17 |
+
model_id_2 = "microsoft/deberta-xlarge-mnli"
|
| 18 |
+
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 19 |
+
model_id_4 = "lordtt13/emo-mobilebert"
|
| 20 |
+
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
| 21 |
+
model_id_6 = "sbcBI/sentiment_analysis_model"
|
| 22 |
+
model_id_7 = "models/oliverguhr/german-sentiment-bert"
|
| 23 |
+
|
| 24 |
+
def parse_output(output_json):
|
| 25 |
+
list_pred=[]
|
| 26 |
+
for i in range(len(output_json[0])):
|
| 27 |
+
label = output_json[0][i]['label']
|
| 28 |
+
score = output_json[0][i]['score']
|
| 29 |
+
list_pred.append((label, score))
|
| 30 |
+
return list_pred
|
| 31 |
+
|
| 32 |
+
def get_prediction(model_id):
|
| 33 |
+
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
| 34 |
+
|
| 35 |
+
def predicto(review):
|
| 36 |
+
classifier = SentimentAnalysisTool.get_prediction(SentimentAnalysisTool.model_id_7)
|
| 37 |
+
prediction = classifier(review)
|
| 38 |
+
print(prediction)
|
| 39 |
+
return SentimentAnalysisTool.parse_output(prediction)
|
| 40 |
+
|
| 41 |
|
| 42 |
|
| 43 |
|