Spaces:
Running
Running
Update text_generator.py
Browse files- text_generator.py +18 -32
text_generator.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
|
|
|
| 1 |
import requests
|
| 2 |
|
| 3 |
from transformers import Tool
|
| 4 |
-
|
| 5 |
|
| 6 |
class TextGenerationTool(Tool):
|
| 7 |
name = "text_generator"
|
|
@@ -11,40 +12,25 @@ class TextGenerationTool(Tool):
|
|
| 11 |
|
| 12 |
inputs = ["text"]
|
| 13 |
outputs = ["text"]
|
| 14 |
-
|
| 15 |
|
| 16 |
-
def __call__(self, prompt: str):
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#def query(payload):
|
| 23 |
-
generated_text = requests.post(API_URL, headers=headers, json=payload)
|
| 24 |
-
# return response.json()
|
| 25 |
-
|
| 26 |
-
#output = query({
|
| 27 |
-
# "inputs": "The answer to the universe is <mask>.",
|
| 28 |
-
#})
|
| 29 |
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# Initialize the text generation pipeline
|
| 36 |
-
#text_generator = pipeline("text-generation") llama mistralai/Mistral-7B-Instruct-v0.1
|
| 37 |
-
#text_generator = pipeline(model="gpt2")
|
| 38 |
-
#text_generator = pipeline(model="meta-llama/Llama-2-7b-chat-hf")
|
| 39 |
-
|
| 40 |
-
# Generate text based on a prompt
|
| 41 |
-
#generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7)
|
| 42 |
-
|
| 43 |
-
# Print the generated text
|
| 44 |
-
#print(generated_text)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
return generated_text
|
| 49 |
-
|
| 50 |
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import requests
|
| 3 |
|
| 4 |
from transformers import Tool
|
| 5 |
+
# Import other necessary libraries if needed
|
| 6 |
|
| 7 |
class TextGenerationTool(Tool):
|
| 8 |
name = "text_generator"
|
|
|
|
| 12 |
|
| 13 |
inputs = ["text"]
|
| 14 |
outputs = ["text"]
|
|
|
|
| 15 |
|
| 16 |
+
def __call__(self, prompt: str):
|
| 17 |
+
API_URL = "https://api-inference.huggingface.co/models/lukasdrg/clinical_longformer_same_tokens_220k"
|
| 18 |
+
headers = {"Authorization": "Bearer " + os.environ['HF']}
|
| 19 |
|
| 20 |
+
# Define the payload for the request
|
| 21 |
+
payload = {
|
| 22 |
+
"inputs": prompt # Adjust this based on your model's input format
|
| 23 |
+
}
|
| 24 |
|
| 25 |
+
# Make the request to the API
|
| 26 |
+
generated_text = requests.post(API_URL, headers=headers, json=payload).json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Extract and return the generated text
|
| 29 |
+
return generated_text["generated_text"]
|
| 30 |
|
| 31 |
+
# Uncomment and customize the following lines based on your text generation needs
|
| 32 |
+
# text_generator = pipeline(model="gpt2")
|
| 33 |
+
# generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Print the generated text if needed
|
| 36 |
+
# print(generated_text)
|