Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| import argparse | |
| import json | |
| from PIL import Image | |
| import openai | |
| from tenacity import retry, wait_exponential, stop_after_attempt, retry_if_exception_type | |
| from utils import encode_image_to_datauri, cot_with_gpt, extract_instructions, infer_with_DiT, roi_localization, fusion | |
| def main(): | |
| parser = argparse.ArgumentParser(description="Evaluate single image + instruction using GPT-4o") | |
| parser.add_argument("image_path", help="Path to input image") | |
| parser.add_argument("json_path", help="Path to JSON file containing categories and instructions") | |
| args = parser.parse_args() | |
| openai.api_key = "YOUR_API_KEY" | |
| if not openai.api_key: | |
| raise ValueError("OPENAI_API_KEY environment variable not set.") | |
| os.makedirs("results", exist_ok=True) | |
| ####################################################### | |
| ### Load instructions from JSON ### | |
| ####################################################### | |
| try: | |
| with open(args.json_path, 'r') as f: | |
| data = json.load(f) | |
| categories = data.get('categories', []) | |
| instructions = data.get('instructions', []) | |
| if not categories or not instructions: | |
| raise ValueError("JSON file must contain 'categories' and 'instructions' arrays.") | |
| if len(categories) != len(instructions): | |
| raise ValueError("Length of 'categories' and 'instructions' must match.") | |
| print("Loaded instructions from JSON:") | |
| for i, (cat, instr) in enumerate(zip(categories, instructions)): | |
| print(f"Step {i+1}: [{cat}] {instr}") | |
| except Exception as e: | |
| raise ValueError(f"Failed to load JSON file: {str(e)}") | |
| ################################################### | |
| ### Neural Program Interpreter ### | |
| ################################################### | |
| for i in range(len(categories)): | |
| if i == 0: | |
| image = args.image_path | |
| else: | |
| image = f"results/{i-1}.png" | |
| category = categories[i] | |
| instruction = instructions[i] | |
| if category in ('Add', 'Remove', 'Replace', 'Action Change', 'Move', 'Resize'): | |
| if category in ('Add', 'Remove', 'Replace'): | |
| if category == 'Add': | |
| edited_image = infer_with_DiT('RoI Editing', image, instruction, category) | |
| else: | |
| mask_image = roi_localization(image, instruction, category) | |
| edited_image = infer_with_DiT('RoI Inpainting', mask_image, instruction, category) | |
| elif category == 'Action Change': | |
| mask_image = roi_localization(image, instruction, category) | |
| edited_image = infer_with_DiT('RoI Inpainting', mask_image, instruction, 'Remove') | |
| changed_instance, x0, y1, scale = infer_with_DiT('RoI Editing', image, instruction, category) | |
| fusion_image = fusion(edited_image, changed_instance, x0, y1, scale) | |
| edited_image = infer_with_DiT('RoI Compositioning', fusion_image, instruction, None) | |
| elif category in ('Move', 'Resize'): | |
| mask_image, changed_instance, x0, y1, scale = roi_localization(image, instruction, category) | |
| edited_image = infer_with_DiT('RoI Inpainting', mask_image, instruction, 'Remove') | |
| fusion_image = fusion(edited_image, changed_instance, x0, y1, scale) | |
| fusion_image.save("fusion.png") | |
| edited_image = infer_with_DiT('RoI Compositioning', fusion_image, instruction, None) | |
| elif category in ('Appearance Change', 'Background Change', 'Color Change', 'Material Change', 'Expression Change'): | |
| edited_image = infer_with_DiT('RoI Editing', image, instruction, category) | |
| elif category in ('Tone Transfer', 'Style Change'): | |
| edited_image = infer_with_DiT('Global Transformation', image, instruction, category) | |
| else: | |
| raise ValueError(f"Invalid category: '{category}'") | |
| image = edited_image | |
| image.save(f"results/{i}.png") | |
| print(f"Step {i+1} completed: {category} - {instruction}") | |
| if __name__ == "__main__": | |
| main() | 
