add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import matplotlib.patches as patches
|
| 9 |
+
|
| 10 |
+
from random import choice
|
| 11 |
+
import io
|
| 12 |
+
|
| 13 |
+
detector50 = pipeline(model="facebook/detr-resnet-50")
|
| 14 |
+
|
| 15 |
+
detector101 = pipeline(model="facebook/detr-resnet-101")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import gradio as gr
|
| 19 |
+
|
| 20 |
+
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
| 21 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
| 22 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
| 23 |
+
|
| 24 |
+
fdic = {
|
| 25 |
+
"family" : "Impact",
|
| 26 |
+
"style" : "italic",
|
| 27 |
+
"size" : 15,
|
| 28 |
+
"color" : "yellow",
|
| 29 |
+
"weight" : "bold"
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_figure(in_pil_img, in_results):
|
| 34 |
+
plt.figure(figsize=(16, 10))
|
| 35 |
+
plt.imshow(in_pil_img)
|
| 36 |
+
#pyplot.gcf()
|
| 37 |
+
ax = plt.gca()
|
| 38 |
+
|
| 39 |
+
for prediction in in_results:
|
| 40 |
+
selected_color = choice(COLORS)
|
| 41 |
+
|
| 42 |
+
x, y = prediction['box']['xmin'], prediction['box']['ymin'],
|
| 43 |
+
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
| 44 |
+
|
| 45 |
+
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
| 46 |
+
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
|
| 47 |
+
|
| 48 |
+
plt.axis("off")
|
| 49 |
+
|
| 50 |
+
return plt.gcf()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def infer(model, in_pil_img):
|
| 54 |
+
|
| 55 |
+
results = None
|
| 56 |
+
if model == "detr-resnet-101"
|
| 57 |
+
results = detector101(in_pil_img)
|
| 58 |
+
else:
|
| 59 |
+
results = detector50(in_pil_img)
|
| 60 |
+
|
| 61 |
+
figure = get_figure(in_pil_img, results)
|
| 62 |
+
|
| 63 |
+
buf = io.BytesIO()
|
| 64 |
+
figure.savefig(buf, bbox_inches='tight')
|
| 65 |
+
buf.seek(0)
|
| 66 |
+
output_pil_img = Image.open(buf)
|
| 67 |
+
|
| 68 |
+
return output_pil_img
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
with gr.Blocks(title="DETR Object Detection - ClassCat",
|
| 72 |
+
css=".gradio-container {background:lightyellow;}"
|
| 73 |
+
) as demo:
|
| 74 |
+
#sample_index = gr.State([])
|
| 75 |
+
|
| 76 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">DETR Object Detection</div>""")
|
| 77 |
+
|
| 78 |
+
gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""")
|
| 79 |
+
|
| 80 |
+
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50")
|
| 81 |
+
|
| 82 |
+
gr.HTML("""<br/>""")
|
| 83 |
+
gr.HTML("""<h4 style="color:navy;">2-a. Select an example by clicking a thumbnail below.</h4>""")
|
| 84 |
+
gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""")
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
input_image = gr.Image(label="Input image", type="pil")
|
| 88 |
+
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
| 89 |
+
|
| 90 |
+
gr.Examples(['samples/cats.jpg', 'samples/detectron2.png', 'samples/cat.jpg', 'samples/hotdog.jpg'], inputs=input_image)
|
| 91 |
+
|
| 92 |
+
gr.HTML("""<br/>""")
|
| 93 |
+
gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 15-20 seconds (on cpu)</h4>""")
|
| 94 |
+
|
| 95 |
+
send_btn = gr.Button("Infer")
|
| 96 |
+
send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image])
|
| 97 |
+
|
| 98 |
+
gr.HTML("""<br/>""")
|
| 99 |
+
gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
|
| 100 |
+
gr.HTML("""<ul>""")
|
| 101 |
+
gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""")
|
| 102 |
+
gr.HTML("""</ul>""")
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
#demo.queue()
|
| 106 |
+
demo.launch(debug=True)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
### EOF ###
|