Spaces:
Build error
Build error
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torchvision import datasets
|
| 5 |
+
from torchvision.transforms import ToTensor
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Define model
|
| 9 |
+
class NeuralNetwork(nn.Module):
|
| 10 |
+
def __init__(self):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.flatten = nn.Flatten()
|
| 13 |
+
self.linear_relu_stack = nn.Sequential(
|
| 14 |
+
nn.Linear(28*28, 512),
|
| 15 |
+
nn.ReLU(),
|
| 16 |
+
nn.Linear(512, 512),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
nn.Linear(512, 10)
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
x = self.flatten(x)
|
| 23 |
+
logits = self.linear_relu_stack(x)
|
| 24 |
+
return logits
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
model = NeuralNetwork()
|
| 28 |
+
model.load_state_dict(torch.load("model_mnist_mlp.pth"))
|
| 29 |
+
|
| 30 |
+
model.eval()
|
| 31 |
+
|
| 32 |
+
import gradio as gr
|
| 33 |
+
from torchvision import transforms
|
| 34 |
+
|
| 35 |
+
def predict(image):
|
| 36 |
+
tsr_image = transforms.ToTensor()(image)
|
| 37 |
+
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
pred = model(tsr_image)
|
| 40 |
+
prob = torch.nn.functional.softmax(pred[0], dim=0)
|
| 41 |
+
|
| 42 |
+
confidences = {i: float(prob[i]) for i in range(10)}
|
| 43 |
+
|
| 44 |
+
return confidences
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="テスト"
|
| 48 |
+
) as demo:
|
| 49 |
+
gr.HTML('<div style="font-size:12pt; text-align:center; color:yellow;"MNIST 分類器</div>')
|
| 50 |
+
|
| 51 |
+
with gr.Row():
|
| 52 |
+
input_image = gr.Image(label="画像入力", type="pil", image_mode="L", shape=(28, 28), invert_colors=True)
|
| 53 |
+
|
| 54 |
+
output_label=gr.Label(label="予測確率", num_top_classes=5)
|
| 55 |
+
|
| 56 |
+
send_btn = gr.Button("予測する")
|
| 57 |
+
send_btn.click(fn=predict, inputs=input_image, outputs=output_label)
|
| 58 |
+
|
| 59 |
+
# demo.queue(concurrency_count=3)
|
| 60 |
+
demo.launch()
|
| 61 |
+
|
| 62 |
+
### EOF ###
|