Spaces:
Runtime error
Runtime error
| # common | |
| import os, sys | |
| import math | |
| #import numpy as np | |
| #from random import randrange | |
| # torch | |
| import torch | |
| from torch import nn | |
| #from torch import einsum | |
| import torch.nn.functional as F | |
| #from torch import optim | |
| #from torch.optim import lr_scheduler | |
| #from torch.utils.data import DataLoader | |
| #from torch.utils.data.sampler import SubsetRandomSampler | |
| # torchVision | |
| import torchvision | |
| from torchvision import transforms | |
| #from torchvision import models | |
| #from torchvision.datasets import CIFAR10, CIFAR100 | |
| # torchinfo | |
| #from torchinfo import summary | |
| # Define model | |
| class WideBasic(nn.Module): | |
| def __init__(self, in_channels, out_channels, stride=1): | |
| super().__init__() | |
| self.residual = nn.Sequential( | |
| nn.BatchNorm2d(in_channels), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=1 | |
| ), | |
| nn.BatchNorm2d(out_channels), | |
| nn.ReLU(inplace=True), | |
| nn.Dropout(), | |
| nn.Conv2d( | |
| out_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1 | |
| ) | |
| ) | |
| self.shortcut = nn.Sequential() | |
| if in_channels != out_channels or stride != 1: | |
| self.shortcut = nn.Sequential( | |
| nn.Conv2d(in_channels, out_channels, 1, stride=stride) | |
| ) | |
| def forward(self, x): | |
| residual = self.residual(x) | |
| shortcut = self.shortcut(x) | |
| return residual + shortcut | |
| class WideResNet(nn.Module): | |
| def __init__(self, num_classes, block, depth=50, widen_factor=1): | |
| super().__init__() | |
| self.depth = depth | |
| k = widen_factor | |
| l = int((depth - 4) / 6) | |
| self.in_channels = 16 | |
| self.init_conv = nn.Conv2d(3, self.in_channels, 3, 1, padding=1) | |
| self.conv2 = self._make_layer(block, 16 * k, l, 1) | |
| self.conv3 = self._make_layer(block, 32 * k, l, 2) | |
| self.conv4 = self._make_layer(block, 64 * k, l, 2) | |
| self.bn = nn.BatchNorm2d(64 * k) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
| self.linear = nn.Linear(64 * k, num_classes) | |
| def forward(self, x): | |
| x = self.init_conv(x) | |
| x = self.conv2(x) | |
| x = self.conv3(x) | |
| x = self.conv4(x) | |
| x = self.bn(x) | |
| x = self.relu(x) | |
| x = self.avg_pool(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.linear(x) | |
| return x | |
| def _make_layer(self, block, out_channels, num_blocks, stride): | |
| strides = [stride] + [1] * (num_blocks - 1) | |
| layers = [] | |
| for stride in strides: | |
| layers.append(block(self.in_channels, out_channels, stride)) | |
| self.in_channels = out_channels | |
| return nn.Sequential(*layers) | |
| model = WideResNet(10, WideBasic, depth=40, widen_factor=10) | |
| model.load_state_dict( | |
| torch.load("weights/cifar10_wide_resnet_model.pt", | |
| map_location=torch.device('cpu')) | |
| ) | |
| model.eval() | |
| import gradio as gr | |
| from torchvision import transforms | |
| import os | |
| import glob | |
| examples_dir = './examples' | |
| example_files = glob.glob(os.path.join(examples_dir, '*.png')) | |
| normalize = transforms.Normalize( | |
| mean=[0.4914, 0.4822, 0.4465], | |
| std=[0.2470, 0.2435, 0.2616], | |
| ) | |
| transform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| normalize, | |
| ]) | |
| classes = [ | |
| "airplane", | |
| "automobile", | |
| "bird", | |
| "cat", | |
| "deer", | |
| "dog", | |
| "frog", | |
| "horse", | |
| "ship", | |
| "truck", | |
| ] | |
| def predict(image): | |
| tsr_image = transform(image).unsqueeze(dim=0) | |
| model.eval() | |
| with torch.no_grad(): | |
| pred = model(tsr_image) | |
| prob = torch.nn.functional.softmax(pred[0], dim=0) | |
| confidences = {classes[i]: float(prob[i]) for i in range(10)} | |
| return confidences | |
| with gr.Blocks(css=".gradio-container {background:honeydew;}", title="WideResNet - CIFAR10 Classification" | |
| ) as demo: | |
| gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">WideResNet - CIFAR10 Classification</div>""") | |
| with gr.Row(): | |
| input_image = gr.Image(type="pil", image_mode="RGB", shape=(32, 32)) | |
| output_label=gr.Label(label="Probabilities", num_top_classes=3) | |
| send_btn = gr.Button("Infer") | |
| with gr.Row(): | |
| gr.Examples(['./examples/cifar10_test00.png'], label='Sample images : dog', inputs=input_image) | |
| gr.Examples(['./examples/cifar10_test01.png'], label='ship', inputs=input_image) | |
| gr.Examples(['./examples/cifar10_test02.png'], label='airplane', inputs=input_image) | |
| gr.Examples(['./examples/cifar10_test03.png'], label='frog', inputs=input_image) | |
| gr.Examples(['./examples/cifar10_test04.png'], label='truck', inputs=input_image) | |
| gr.Examples(['./examples/cifar10_test05.png'], label='automobile', inputs=input_image) | |
| #gr.Examples(example_files, inputs=input_image) | |
| #gr.Examples(['examples/sample02.png', 'examples/sample04.png'], inputs=input_image2) | |
| send_btn.click(fn=predict, inputs=input_image, outputs=output_label) | |
| # demo.queue(concurrency_count=3) | |
| demo.launch() | |
| ### EOF ### |