Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| from src.about import Tasks | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| # Leaderboard columns | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent( | |
| "T", "str", True, never_hidden=True)]) | |
| auto_eval_column_dict.append(["model", ColumnContent, ColumnContent( | |
| "Model", "markdown", True, never_hidden=True)]) | |
| # Scores | |
| # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) | |
| for task in Tasks: | |
| auto_eval_column_dict.append( | |
| [task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
| # Model information | |
| auto_eval_column_dict.append( | |
| ["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
| auto_eval_column_dict.append( | |
| ["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
| auto_eval_column_dict.append( | |
| ["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass( | |
| "AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| # For the queue columns in the submission tab | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| private = ColumnContent("private", "bool", True) | |
| status = ColumnContent("status", "str", True) | |
| # All the model information that we might need | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| class ModelType(Enum): | |
| OP = ModelDetails(name="open", symbol="🟢") | |
| CL = ModelDetails(name="closed", symbol="⭕") | |
| Unknown = ModelDetails(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| if "open" in type or "🟢" in type: | |
| return ModelType.OP | |
| if "closed" in type or "⭕" in type: | |
| return ModelType.CL | |
| return ModelType.Unknown | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |