Spaces:
Runtime error
Runtime error
Andrea Seveso
commited on
Commit
·
fd6f23a
1
Parent(s):
4dadd44
Remove weight type
Browse files- src/leaderboard/read_evals.py +34 -33
src/leaderboard/read_evals.py
CHANGED
|
@@ -1,37 +1,33 @@
|
|
| 1 |
-
print("--- CONFIRMED: Running the modified version of read_evals.py ---")
|
| 2 |
-
|
| 3 |
-
import glob
|
| 4 |
-
import json
|
| 5 |
-
import math
|
| 6 |
-
import os
|
| 7 |
-
from dataclasses import dataclass
|
| 8 |
-
|
| 9 |
-
import dateutil
|
| 10 |
-
import numpy as np
|
| 11 |
-
|
| 12 |
-
from src.display.formatting import make_clickable_model
|
| 13 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
| 14 |
from src.submission.check_validity import is_model_on_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
@dataclass
|
| 18 |
class EvalResult:
|
| 19 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 20 |
"""
|
| 21 |
-
eval_name: str
|
| 22 |
-
full_model: str
|
| 23 |
-
org: str
|
| 24 |
model: str
|
| 25 |
-
revision: str
|
| 26 |
results: dict
|
| 27 |
precision: Precision = Precision.Unknown
|
| 28 |
-
model_type: ModelType = ModelType.Unknown
|
| 29 |
-
|
| 30 |
-
architecture: str = "Unknown"
|
| 31 |
license: str = "?"
|
| 32 |
likes: int = 0
|
| 33 |
num_params: int = 0
|
| 34 |
-
date: str = ""
|
| 35 |
still_on_hub: bool = False
|
| 36 |
|
| 37 |
@classmethod
|
|
@@ -46,7 +42,8 @@ class EvalResult:
|
|
| 46 |
precision = Precision.from_str(config.get("model_dtype"))
|
| 47 |
|
| 48 |
# Get model and org
|
| 49 |
-
org_and_model = config.get(
|
|
|
|
| 50 |
org_and_model = org_and_model.split("/", 1)
|
| 51 |
|
| 52 |
if len(org_and_model) == 1:
|
|
@@ -74,7 +71,8 @@ class EvalResult:
|
|
| 74 |
task = task.value
|
| 75 |
|
| 76 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 77 |
-
accs = np.array([v.get(task.metric, None)
|
|
|
|
| 78 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 79 |
continue
|
| 80 |
|
|
@@ -87,37 +85,38 @@ class EvalResult:
|
|
| 87 |
org=org,
|
| 88 |
model=model,
|
| 89 |
results=results,
|
| 90 |
-
precision=precision,
|
| 91 |
-
revision=
|
| 92 |
still_on_hub=still_on_hub,
|
| 93 |
architecture=architecture
|
| 94 |
)
|
| 95 |
|
| 96 |
def update_with_request_file(self, requests_path):
|
| 97 |
"""Finds the relevant request file for the current model and updates info with it"""
|
| 98 |
-
request_file = get_request_file_for_model(
|
|
|
|
| 99 |
|
| 100 |
try:
|
| 101 |
with open(request_file, "r") as f:
|
| 102 |
request = json.load(f)
|
| 103 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 104 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 105 |
self.license = request.get("license", "?")
|
| 106 |
self.likes = request.get("likes", 0)
|
| 107 |
self.num_params = request.get("params", 0)
|
| 108 |
self.date = request.get("submitted_time", "")
|
| 109 |
except Exception:
|
| 110 |
-
print(
|
|
|
|
| 111 |
|
| 112 |
def to_dict(self):
|
| 113 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 114 |
-
average = sum([v for v in self.results.values()
|
|
|
|
| 115 |
data_dict = {
|
| 116 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 117 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 118 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 119 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 120 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 121 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 122 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 123 |
AutoEvalColumn.revision.name: self.revision,
|
|
@@ -167,7 +166,8 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 167 |
|
| 168 |
# Sort the files by date
|
| 169 |
try:
|
| 170 |
-
files.sort(key=lambda x: x.removesuffix(
|
|
|
|
| 171 |
except dateutil.parser._parser.ParserError:
|
| 172 |
files = [files[-1]]
|
| 173 |
|
|
@@ -183,14 +183,15 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 183 |
# Store results of same eval together
|
| 184 |
eval_name = eval_result.eval_name
|
| 185 |
if eval_name in eval_results.keys():
|
| 186 |
-
eval_results[eval_name].results.update(
|
|
|
|
| 187 |
else:
|
| 188 |
eval_results[eval_name] = eval_result
|
| 189 |
|
| 190 |
results = []
|
| 191 |
for v in eval_results.values():
|
| 192 |
try:
|
| 193 |
-
v.to_dict()
|
| 194 |
results.append(v)
|
| 195 |
except Exception as e:
|
| 196 |
print(f"--- DEBUG: SKIPPING RESULT FILE. ERROR IS: ---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from src.submission.check_validity import is_model_on_hub
|
| 2 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision
|
| 3 |
+
from src.display.formatting import make_clickable_model
|
| 4 |
+
import numpy as np
|
| 5 |
+
import dateutil
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
import os
|
| 8 |
+
import math
|
| 9 |
+
import json
|
| 10 |
+
import glob
|
| 11 |
+
print("--- CONFIRMED: Running the modified version of read_evals.py ---")
|
| 12 |
|
| 13 |
|
| 14 |
@dataclass
|
| 15 |
class EvalResult:
|
| 16 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 17 |
"""
|
| 18 |
+
eval_name: str # org_model_precision (uid)
|
| 19 |
+
full_model: str # org/model (path on hub)
|
| 20 |
+
org: str
|
| 21 |
model: str
|
| 22 |
+
revision: str # commit hash, "" if main
|
| 23 |
results: dict
|
| 24 |
precision: Precision = Precision.Unknown
|
| 25 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 26 |
+
architecture: str = "Unknown"
|
|
|
|
| 27 |
license: str = "?"
|
| 28 |
likes: int = 0
|
| 29 |
num_params: int = 0
|
| 30 |
+
date: str = "" # submission date of request file
|
| 31 |
still_on_hub: bool = False
|
| 32 |
|
| 33 |
@classmethod
|
|
|
|
| 42 |
precision = Precision.from_str(config.get("model_dtype"))
|
| 43 |
|
| 44 |
# Get model and org
|
| 45 |
+
org_and_model = config.get(
|
| 46 |
+
"model_name", config.get("model_args", None))
|
| 47 |
org_and_model = org_and_model.split("/", 1)
|
| 48 |
|
| 49 |
if len(org_and_model) == 1:
|
|
|
|
| 71 |
task = task.value
|
| 72 |
|
| 73 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 74 |
+
accs = np.array([v.get(task.metric, None)
|
| 75 |
+
for k, v in data["results"].items() if task.benchmark == k])
|
| 76 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 77 |
continue
|
| 78 |
|
|
|
|
| 85 |
org=org,
|
| 86 |
model=model,
|
| 87 |
results=results,
|
| 88 |
+
precision=precision,
|
| 89 |
+
revision=config.get("model_sha", ""),
|
| 90 |
still_on_hub=still_on_hub,
|
| 91 |
architecture=architecture
|
| 92 |
)
|
| 93 |
|
| 94 |
def update_with_request_file(self, requests_path):
|
| 95 |
"""Finds the relevant request file for the current model and updates info with it"""
|
| 96 |
+
request_file = get_request_file_for_model(
|
| 97 |
+
requests_path, self.full_model, self.precision.value.name)
|
| 98 |
|
| 99 |
try:
|
| 100 |
with open(request_file, "r") as f:
|
| 101 |
request = json.load(f)
|
| 102 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
|
|
|
| 103 |
self.license = request.get("license", "?")
|
| 104 |
self.likes = request.get("likes", 0)
|
| 105 |
self.num_params = request.get("params", 0)
|
| 106 |
self.date = request.get("submitted_time", "")
|
| 107 |
except Exception:
|
| 108 |
+
print(
|
| 109 |
+
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
| 110 |
|
| 111 |
def to_dict(self):
|
| 112 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 113 |
+
average = sum([v for v in self.results.values()
|
| 114 |
+
if v is not None]) / len(Tasks)
|
| 115 |
data_dict = {
|
| 116 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 117 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 118 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 119 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
|
|
|
| 120 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 121 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 122 |
AutoEvalColumn.revision.name: self.revision,
|
|
|
|
| 166 |
|
| 167 |
# Sort the files by date
|
| 168 |
try:
|
| 169 |
+
files.sort(key=lambda x: x.removesuffix(
|
| 170 |
+
".json").removeprefix("results_")[:-7])
|
| 171 |
except dateutil.parser._parser.ParserError:
|
| 172 |
files = [files[-1]]
|
| 173 |
|
|
|
|
| 183 |
# Store results of same eval together
|
| 184 |
eval_name = eval_result.eval_name
|
| 185 |
if eval_name in eval_results.keys():
|
| 186 |
+
eval_results[eval_name].results.update(
|
| 187 |
+
{k: v for k, v in eval_result.results.items() if v is not None})
|
| 188 |
else:
|
| 189 |
eval_results[eval_name] = eval_result
|
| 190 |
|
| 191 |
results = []
|
| 192 |
for v in eval_results.values():
|
| 193 |
try:
|
| 194 |
+
v.to_dict() # we test if the dict version is complete
|
| 195 |
results.append(v)
|
| 196 |
except Exception as e:
|
| 197 |
print(f"--- DEBUG: SKIPPING RESULT FILE. ERROR IS: ---")
|