Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,335 +1,120 @@
|
|
| 1 |
-
import
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import json
|
| 4 |
-
import logging
|
| 5 |
-
import torch
|
| 6 |
from PIL import Image
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
-
from diffusers.utils import load_image
|
| 11 |
-
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 12 |
-
import copy
|
| 13 |
-
import random
|
| 14 |
-
import time
|
| 15 |
import base64
|
|
|
|
|
|
|
| 16 |
import tempfile
|
| 17 |
|
| 18 |
-
# Load LoRAs from JSON file
|
| 19 |
-
with open('loras.json', 'r') as f:
|
| 20 |
-
loras = json.load(f)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
vae=good_vae,
|
| 32 |
-
transformer=pipe.transformer,
|
| 33 |
-
text_encoder=pipe.text_encoder,
|
| 34 |
-
tokenizer=pipe.tokenizer,
|
| 35 |
-
text_encoder_2=pipe.text_encoder_2,
|
| 36 |
-
tokenizer_2=pipe.tokenizer_2,
|
| 37 |
-
torch_dtype=dtype
|
| 38 |
-
)
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
class calculateDuration:
|
| 45 |
-
def __init__(self, activity_name=""):
|
| 46 |
-
self.activity_name = activity_name
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
self.elapsed_time = self.end_time - self.start_time
|
| 55 |
-
if self.activity_name:
|
| 56 |
-
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
| 57 |
-
else:
|
| 58 |
-
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 59 |
-
|
| 60 |
-
def update_selection(evt: gr.SelectData, width, height):
|
| 61 |
-
selected_lora = loras[evt.index]
|
| 62 |
-
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
| 63 |
-
lora_repo = selected_lora["repo"]
|
| 64 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
| 65 |
-
if "aspect" in selected_lora:
|
| 66 |
-
if selected_lora["aspect"] == "portrait":
|
| 67 |
-
width = 768
|
| 68 |
-
height = 1024
|
| 69 |
-
elif selected_lora["aspect"] == "landscape":
|
| 70 |
-
width = 1024
|
| 71 |
-
height = 768
|
| 72 |
-
else:
|
| 73 |
-
width = 1024
|
| 74 |
-
height = 1024
|
| 75 |
-
return (
|
| 76 |
-
gr.update(placeholder=new_placeholder),
|
| 77 |
-
updated_text,
|
| 78 |
-
evt.index,
|
| 79 |
-
width,
|
| 80 |
-
height,
|
| 81 |
-
)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 87 |
-
with calculateDuration("Generating image"):
|
| 88 |
-
# Generate image
|
| 89 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 90 |
-
prompt=prompt_mash,
|
| 91 |
-
num_inference_steps=steps,
|
| 92 |
-
guidance_scale=cfg_scale,
|
| 93 |
-
width=width,
|
| 94 |
-
height=height,
|
| 95 |
-
generator=generator,
|
| 96 |
-
joint_attention_kwargs={"scale": lora_scale},
|
| 97 |
-
output_type="pil",
|
| 98 |
-
good_vae=good_vae,
|
| 99 |
-
):
|
| 100 |
-
yield img
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
final_image = pipe_i2i(
|
| 107 |
-
prompt=prompt_mash,
|
| 108 |
-
image=image_input,
|
| 109 |
-
strength=image_strength,
|
| 110 |
-
num_inference_steps=steps,
|
| 111 |
-
guidance_scale=cfg_scale,
|
| 112 |
-
width=width,
|
| 113 |
-
height=height,
|
| 114 |
-
generator=generator,
|
| 115 |
-
joint_attention_kwargs={"scale": lora_scale},
|
| 116 |
-
output_type="pil",
|
| 117 |
-
).images[0]
|
| 118 |
|
| 119 |
-
# Save the image as a downloadable PNG file
|
| 120 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
| 121 |
-
final_image.save(temp_file.name, "PNG")
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
img_base64 = base64.b64encode(f.read()).decode("utf-8")
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
raise gr.Error("You must select a LoRA before proceeding.")
|
| 135 |
-
selected_lora = loras[selected_index]
|
| 136 |
-
lora_path = selected_lora["repo"]
|
| 137 |
-
trigger_word = selected_lora["trigger_word"]
|
| 138 |
-
if(trigger_word):
|
| 139 |
-
if "trigger_position" in selected_lora:
|
| 140 |
-
if selected_lora["trigger_position"] == "prepend":
|
| 141 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
| 142 |
-
else:
|
| 143 |
-
prompt_mash = f"{prompt} {trigger_word}"
|
| 144 |
-
else:
|
| 145 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
| 146 |
-
else:
|
| 147 |
-
prompt_mash = prompt
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# Load LoRA weights
|
| 154 |
-
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
| 155 |
-
pipe_to_use = pipe_i2i if image_input is not None else pipe
|
| 156 |
-
weight_name = selected_lora.get("weights", None)
|
| 157 |
-
|
| 158 |
-
pipe_to_use.load_lora_weights(
|
| 159 |
-
lora_path,
|
| 160 |
-
weight_name=weight_name,
|
| 161 |
-
low_cpu_mem_usage=True
|
| 162 |
-
)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
for image in image_generator:
|
| 179 |
-
step_counter+=1
|
| 180 |
-
final_image = image
|
| 181 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 182 |
-
yield image, seed, None, None, gr.update(value=progress_bar, visible=True)
|
| 183 |
-
|
| 184 |
-
# Save the final image and encode to Base64
|
| 185 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
| 186 |
-
final_image.save(temp_file.name, "PNG")
|
| 187 |
-
with open(temp_file.name, "rb") as f:
|
| 188 |
-
img_base64 = base64.b64encode(f.read()).decode("utf-8")
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
print(base_model)
|
| 198 |
-
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
| 199 |
-
raise Exception("Not a FLUX LoRA!")
|
| 200 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 201 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
| 202 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 203 |
-
fs = HfFileSystem()
|
| 204 |
-
try:
|
| 205 |
-
list_of_files = fs.ls(link, detail=False)
|
| 206 |
-
for file in list_of_files:
|
| 207 |
-
if(file.endswith(".safetensors")):
|
| 208 |
-
safetensors_name = file.split("/")[-1]
|
| 209 |
-
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
| 210 |
-
image_elements = file.split("/")
|
| 211 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 212 |
-
except Exception as e:
|
| 213 |
-
print(e)
|
| 214 |
-
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 215 |
-
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 216 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
else:
|
| 224 |
-
return get_huggingface_safetensors(link)
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
<img src="{image}" />
|
| 237 |
-
<div>
|
| 238 |
-
<h3>{title}</h3>
|
| 239 |
-
<small>{"Using: <code><b"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
| 240 |
-
</div>
|
| 241 |
-
</div>
|
| 242 |
</div>
|
| 243 |
-
|
| 244 |
-
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
| 245 |
-
if(not existing_item_index):
|
| 246 |
-
new_item = {
|
| 247 |
-
"image": image,
|
| 248 |
-
"title": title,
|
| 249 |
-
"repo": repo,
|
| 250 |
-
"weights": path,
|
| 251 |
-
"trigger_word": trigger_word
|
| 252 |
-
}
|
| 253 |
-
print(new_item)
|
| 254 |
-
existing_item_index = len(loras)
|
| 255 |
-
loras.append(new_item)
|
| 256 |
-
|
| 257 |
-
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
| 258 |
-
except Exception as e:
|
| 259 |
-
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
|
| 260 |
-
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
|
| 261 |
-
else:
|
| 262 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 263 |
|
| 264 |
-
|
| 265 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 266 |
|
| 267 |
-
run_lora.zerogpu = True
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
#gen_column{align-self: stretch}
|
| 272 |
-
#title{text-align: center}
|
| 273 |
-
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
| 274 |
-
#title img{width: 100px; margin-right: 0.5em}
|
| 275 |
-
#gallery .grid-wrap{height: 10vh}
|
| 276 |
-
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
| 277 |
-
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
| 278 |
-
.card_internal img{margin-right: 1em}
|
| 279 |
-
.styler{--form-gap-width: 0px !important}
|
| 280 |
-
#progress{height:30px}
|
| 281 |
-
#progress .generating{display:none}
|
| 282 |
-
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
| 283 |
-
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
| 284 |
-
'''
|
| 285 |
-
font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
|
| 286 |
-
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
|
| 287 |
-
title = gr.HTML(
|
| 288 |
-
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
|
| 289 |
-
elem_id="title",
|
| 290 |
-
)
|
| 291 |
-
selected_index = gr.State(None)
|
| 292 |
-
with gr.Row():
|
| 293 |
-
with gr.Column(scale=3):
|
| 294 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
| 295 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
| 296 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 297 |
-
with gr.Row():
|
| 298 |
-
with gr.Column():
|
| 299 |
-
selected_info = gr.Markdown("")
|
| 300 |
-
gallery = gr.Gallery(
|
| 301 |
-
[(item["image"], item["title"]) for item in loras],
|
| 302 |
-
label="LoRA Gallery",
|
| 303 |
-
allow_preview=False,
|
| 304 |
-
columns=3,
|
| 305 |
-
elem_id="gallery",
|
| 306 |
-
show_share_button=False
|
| 307 |
-
)
|
| 308 |
-
with gr.Group():
|
| 309 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
|
| 310 |
-
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 311 |
-
custom_lora_info = gr.HTML(visible=False)
|
| 312 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 313 |
-
with gr.Column():
|
| 314 |
-
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
| 315 |
-
result = gr.Image(label="Generated Image")
|
| 316 |
-
download_link = gr.File(label="Download Image")
|
| 317 |
-
base64_output = gr.Textbox(label="Base64 Encoded Image")
|
| 318 |
-
|
| 319 |
-
with gr.Row():
|
| 320 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 321 |
-
with gr.Row():
|
| 322 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
| 323 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
| 324 |
-
with gr.Column():
|
| 325 |
-
with gr.Row():
|
| 326 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 327 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 328 |
-
|
| 329 |
-
with gr.Row():
|
| 330 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 331 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 332 |
-
|
| 333 |
-
with gr.Row():
|
| 334 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 335 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum
|
|
|
|
| 1 |
+
import qrcode
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import base64
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
import tempfile
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Function to generate a QR code and return Base64 and PNG file
|
| 12 |
+
def generate_qr(data):
|
| 13 |
+
qr = qrcode.QRCode(
|
| 14 |
+
version=1,
|
| 15 |
+
error_correction=qrcode.constants.ERROR_CORRECT_L,
|
| 16 |
+
box_size=10,
|
| 17 |
+
border=4,
|
| 18 |
+
)
|
| 19 |
+
qr.add_data(data)
|
| 20 |
+
qr.make(fit=True)
|
| 21 |
+
img = qr.make_image(fill="black", back_color="white")
|
| 22 |
|
| 23 |
+
# Encode the image as a base64 string
|
| 24 |
+
buffered = io.BytesIO()
|
| 25 |
+
img.save(buffered, format="PNG")
|
| 26 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Save the image temporarily as a PNG file
|
| 29 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
| 30 |
+
img.save(temp_file.name, format="PNG")
|
| 31 |
+
temp_file.close()
|
| 32 |
|
| 33 |
+
return f"data:image/png;base64,{img_base64}", temp_file.name, img_base64
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Function to decode a QR code from an uploaded image
|
| 37 |
+
def decode_qr(img):
|
| 38 |
+
if img is None:
|
| 39 |
+
return "No image uploaded."
|
| 40 |
|
| 41 |
+
# Convert PIL image to a NumPy array
|
| 42 |
+
img_array = np.array(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Convert RGB to BGR as OpenCV expects
|
| 45 |
+
if img_array.ndim == 3:
|
| 46 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Initialize OpenCV QR code detector
|
| 49 |
+
detector = cv2.QRCodeDetector()
|
| 50 |
+
data, _, _ = detector.detectAndDecode(img_array)
|
| 51 |
+
return data if data else "No QR code found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# Gradio Interface
|
| 55 |
+
def create_gradio_interface():
|
| 56 |
+
with gr.Blocks() as demo:
|
| 57 |
+
gr.Markdown("## QR Code Generator and Decoder")
|
|
|
|
| 58 |
|
| 59 |
+
# Tab for generating QR codes
|
| 60 |
+
with gr.Tab("Generate QR Code"):
|
| 61 |
+
with gr.Row():
|
| 62 |
+
data_input = gr.Textbox(placeholder="Enter text or URL to encode", label="Input Data")
|
| 63 |
+
generate_button = gr.Button("Generate QR Code")
|
| 64 |
|
| 65 |
+
qr_code_html = gr.HTML(label="Generated QR Code (Base64 Embedded)")
|
| 66 |
+
qr_png_file = gr.File(label="Download QR Code (PNG)")
|
| 67 |
+
qr_base64_file = gr.File(label="Download Base64 (TXT)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
def generate_qr_interface(data):
|
| 70 |
+
if not data.strip():
|
| 71 |
+
raise ValueError("Input text cannot be empty!")
|
| 72 |
+
img_base64, png_path, base64_str = generate_qr(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
# Save Base64 string as a .txt file
|
| 75 |
+
base64_txt_path = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
| 76 |
+
with open(base64_txt_path.name, "w") as f:
|
| 77 |
+
f.write(base64_str)
|
| 78 |
+
|
| 79 |
+
# Wrap the base64 string in an <img> tag for display
|
| 80 |
+
html_content = f'<img src="{img_base64}" alt="QR Code" style="max-width:300px;">'
|
| 81 |
+
return html_content, png_path, base64_txt_path.name
|
| 82 |
+
|
| 83 |
+
generate_button.click(
|
| 84 |
+
generate_qr_interface,
|
| 85 |
+
inputs=data_input,
|
| 86 |
+
outputs=[qr_code_html, qr_png_file, qr_base64_file],
|
| 87 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# Tab for decoding QR codes
|
| 90 |
+
with gr.Tab("Decode QR Code"):
|
| 91 |
+
with gr.Row():
|
| 92 |
+
image_input = gr.Image(type="pil", label="Upload QR Code Image")
|
| 93 |
+
decode_button = gr.Button("Decode QR Code")
|
| 94 |
+
|
| 95 |
+
decoded_text = gr.Textbox(label="Decoded Text", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
decode_button.click(
|
| 98 |
+
decode_qr,
|
| 99 |
+
inputs=image_input,
|
| 100 |
+
outputs=decoded_text,
|
| 101 |
+
)
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# Add the logo at the bottom center using gr.HTML
|
| 104 |
+
gr.HTML("""
|
| 105 |
+
<div style="
|
| 106 |
+
position: fixed;
|
| 107 |
+
bottom: 20px;
|
| 108 |
+
left: 50%;
|
| 109 |
+
transform: translateX(-50%);
|
| 110 |
+
z-index: 1000;
|
| 111 |
+
">
|
| 112 |
+
<img src="file=space-logo.png" alt="Space Logo" style="width: 150px; height: auto;">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
</div>
|
| 114 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
demo.launch(share=True)
|
|
|
|
| 117 |
|
|
|
|
| 118 |
|
| 119 |
+
# Run the Gradio interface
|
| 120 |
+
create_gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|