Spaces:
Sleeping
Sleeping
| import openai | |
| import sqlite3 | |
| import numpy as np | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import gradio as gr | |
| import os | |
| # Your OpenAI API Key | |
| openai.api_key = os.environ["Secret"] | |
| # Connect to the SQLite database | |
| db_path = "text_chunks_with_embeddings.db" # Update with the path to your database | |
| conn = sqlite3.connect(db_path) | |
| cursor = conn.cursor() | |
| # Fetch the rows from the database | |
| cursor.execute("SELECT text, embedding FROM chunks") | |
| rows = cursor.fetchall() | |
| # Create a dictionary to store the text and embedding for each row | |
| dictionary_of_vectors = {} | |
| for row in rows: | |
| text = row[0] | |
| embedding_str = row[1] | |
| embedding = np.fromstring(embedding_str, sep=' ') | |
| dictionary_of_vectors[text] = embedding | |
| # Close the connection | |
| conn.close() | |
| def find_closest_neighbors(vector): | |
| cosine_similarities = {} | |
| for key, value in dictionary_of_vectors.items(): | |
| cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0] | |
| sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True) | |
| return sorted_cosine_similarities[0:4] | |
| def generate_embedding(text): | |
| response = openai.Embedding.create( | |
| input=text, | |
| engine="text-embedding-ada-002" | |
| ) | |
| embedding = np.array(response['data'][0]['embedding']) | |
| return embedding | |
| def context_gpt_response(question): | |
| vector = generate_embedding(question) | |
| match_list = find_closest_neighbors(vector) | |
| context = '' | |
| for match in match_list: | |
| context += str(match[0]) | |
| context = context[:1500] # Limit context to the last 1500 characters | |
| prep = f"This is an OpenAI model designed to answer questions specific to grant-making applications for an aquarium. Here is some question-specific context: {context}. Q: {question} A: " | |
| response = openai.Completion.create( | |
| engine="gpt-4", | |
| prompt=prep, | |
| temperature=0.7, | |
| max_tokens=220, | |
| ) | |
| return response['choices'][0]['text'] | |
| iface = gr.Interface(fn=context_gpt_response, inputs="text", outputs="text", title="Aquarium Grant Application Chatbot", description="Context-specific chatbot for grant writing", examples=[["What types of projects are eligible for funding?"], ["Tell me more about the application process."], ["What will be the most impactful grant opportunities?"]]) | |
| iface.launch() |