Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,89 +1,92 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
import sqlite3
|
| 4 |
import numpy as np
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
openai.api_key = "sk-..." # Replace with your key
|
| 8 |
|
| 9 |
-
def find_closest_neighbors(
|
| 10 |
"""
|
| 11 |
Takes a vector and a dictionary of vectors and returns the three closest neighbors
|
| 12 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
cosine_similarities = {}
|
| 14 |
for key, value in dictionary_of_vectors.items():
|
| 15 |
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
|
| 16 |
|
|
|
|
| 17 |
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
|
| 18 |
match_list = sorted_cosine_similarities[0:4]
|
| 19 |
-
|
| 20 |
return match_list
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"""
|
| 24 |
-
|
| 25 |
-
If it's a text file, it reads the file, splits it into 250-character chunks, and returns the chunks.
|
| 26 |
-
If it's a string, it just returns the string.
|
| 27 |
"""
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
message_vector = openai.Embedding.create(
|
| 56 |
-
input=message,
|
| 57 |
-
engine="text-embedding-ada-002"
|
| 58 |
-
)['data'][0]['embedding']
|
| 59 |
-
message_vector = np.array(message_vector)
|
| 60 |
-
|
| 61 |
-
# Find the closest neighbors
|
| 62 |
-
match_list = find_closest_neighbors(message_vector, dictionary_of_vectors)
|
| 63 |
-
context = ''
|
| 64 |
-
for match in match_list:
|
| 65 |
-
context += str(match[0])
|
| 66 |
-
context = context[:-1500]
|
| 67 |
-
|
| 68 |
-
prep = f"This is an OpenAI model tuned to answer questions specific to the Qualia Research institute, a research institute that focuses on consciousness. Here is some question-specific context, and then the Question to answer, related to consciousness, the human experience, and phenomenology: {context}. Here is a question specific to QRI and consciousness in general Q: {message} A: "
|
| 69 |
-
|
| 70 |
-
history_openai_format = []
|
| 71 |
-
for human, assistant in history:
|
| 72 |
-
history_openai_format.append({"role": "user", "content": human })
|
| 73 |
-
history_openai_format.append({"role": "assistant", "content":assistant})
|
| 74 |
-
history_openai_format.append({"role": "user", "content": prep})
|
| 75 |
-
|
| 76 |
-
response = openai.ChatCompletion.create(
|
| 77 |
-
model='gpt-4',
|
| 78 |
-
messages= history_openai_format,
|
| 79 |
-
temperature=1.0,
|
| 80 |
-
stream=True
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
partial_message = ""
|
| 84 |
-
for chunk in response:
|
| 85 |
-
if len(chunk['choices'][0]['delta']) != 0:
|
| 86 |
-
partial_message = partial_message + chunk['choices'][0]['delta']['content']
|
| 87 |
-
yield partial_message
|
| 88 |
-
|
| 89 |
-
gr.ChatInterface(predict, inputs=gr.inputs.Mixed([gr.inputs.Textbox(lines=3), gr.inputs.File()]), allow_flagging=False).queue().launch()
|
|
|
|
| 1 |
+
|
| 2 |
+
import sklearn
|
| 3 |
import sqlite3
|
| 4 |
import numpy as np
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import openai
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
openai.api_key = os.environ["Secret"]
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
+
def find_closest_neighbors(vector1, dictionary_of_vectors):
|
| 13 |
"""
|
| 14 |
Takes a vector and a dictionary of vectors and returns the three closest neighbors
|
| 15 |
"""
|
| 16 |
+
|
| 17 |
+
# Convert the input string to a vector
|
| 18 |
+
vector = openai.Embedding.create(
|
| 19 |
+
input=vector1,
|
| 20 |
+
engine="text-embedding-ada-002"
|
| 21 |
+
)['data'][0]['embedding']
|
| 22 |
+
|
| 23 |
+
vector = np.array(vector)
|
| 24 |
+
|
| 25 |
+
# Finds cosine similarities between the vector and values in the dictionary and Creates a dictionary of cosine similarities with its text key
|
| 26 |
cosine_similarities = {}
|
| 27 |
for key, value in dictionary_of_vectors.items():
|
| 28 |
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
|
| 29 |
|
| 30 |
+
# Sorts the dictionary by value and returns the three highest values
|
| 31 |
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
|
| 32 |
match_list = sorted_cosine_similarities[0:4]
|
| 33 |
+
web = str(sorted_cosine_similarities[0][0])
|
| 34 |
return match_list
|
| 35 |
|
| 36 |
+
# Connect to the database
|
| 37 |
+
conn = sqlite3.connect('QRIdatabase7.db')
|
| 38 |
+
|
| 39 |
+
# Create a cursor
|
| 40 |
+
cursor = conn.cursor()
|
| 41 |
+
|
| 42 |
+
# Select the text and embedding from the chunks table
|
| 43 |
+
cursor.execute('''SELECT text, embedding FROM chunks''')
|
| 44 |
+
|
| 45 |
+
# Fetch the rows
|
| 46 |
+
rows = cursor.fetchall()
|
| 47 |
+
|
| 48 |
+
# Create a dictionary to store the text and embedding for each row
|
| 49 |
+
dictionary_of_vectors = {}
|
| 50 |
+
|
| 51 |
+
# Iterate through the rows and add them to the dictionary
|
| 52 |
+
for row in rows:
|
| 53 |
+
text = row[0]
|
| 54 |
+
embedding_str = row[1]
|
| 55 |
+
# Convert the embedding string to a NumPy array
|
| 56 |
+
embedding = np.fromstring(embedding_str, sep=' ')
|
| 57 |
+
dictionary_of_vectors[text] = embedding
|
| 58 |
+
|
| 59 |
+
# Close the connection
|
| 60 |
+
conn.close()
|
| 61 |
+
|
| 62 |
+
def context_gpt_response(question):
|
| 63 |
"""
|
| 64 |
+
Takes a question and returns an answer
|
|
|
|
|
|
|
| 65 |
"""
|
| 66 |
+
|
| 67 |
+
# Find the closest neighbors
|
| 68 |
+
match_list = find_closest_neighbors(question, dictionary_of_vectors)
|
| 69 |
+
|
| 70 |
+
# Create a string of the text from the closest neighbors
|
| 71 |
+
context = ''
|
| 72 |
+
for match in match_list:
|
| 73 |
+
context += str(match[0])
|
| 74 |
+
context = context[:-1500]
|
| 75 |
+
|
| 76 |
+
prep = f"This is an OpenAI model tuned to answer questions specific to the Qualia Research institute, a research institute that focuses on consciousness. Here is some question-specific context, and then the Question to answer, related to consciousness, the human experience, and phenomenology: {context}. Here is a question specific to QRI and consciousness in general Q: {question} A: "
|
| 77 |
+
# Generate an answer
|
| 78 |
+
response = openai.Completion.create(
|
| 79 |
+
engine="gpt-4",
|
| 80 |
+
prompt=prep,
|
| 81 |
+
temperature=0.7,
|
| 82 |
+
max_tokens=220,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Return the answer
|
| 87 |
+
return response['choices'][0]['text']
|
| 88 |
+
|
| 89 |
+
import gradio as gr
|
| 90 |
+
|
| 91 |
+
iface = gr.Interface(fn=context_gpt_response, inputs="text", outputs="text",title="Qualia Research Institute GPTbot", description="Ask any question and get QRI specific answers!", examples=[["What is QRI?"], ["What is the Symmetry Theory of Valence?"], ["Explain Logarithmic scales of pain and pleasure"]])
|
| 92 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|