Spaces:
Paused
Paused
| import os | |
| from typing import Tuple, Optional | |
| from langchain.prompts.prompt import PromptTemplate | |
| from langchain.retrievers.multi_query import MultiQueryRetriever | |
| from langchain_aws import BedrockEmbeddings | |
| from langchain_aws.chat_models.bedrock_converse import ChatBedrockConverse | |
| from langchain_cohere import ChatCohere | |
| from langchain_fireworks.chat_models import ChatFireworks | |
| from langchain_fireworks.embeddings import FireworksEmbeddings | |
| from langchain_groq.chat_models import ChatGroq | |
| from langchain_openai import ChatOpenAI | |
| from langchain_openai.embeddings import OpenAIEmbeddings | |
| from langchain_anthropic.chat_models import ChatAnthropic | |
| from langchain_mistralai.chat_models import ChatMistralAI | |
| from langchain_mistralai.embeddings import MistralAIEmbeddings | |
| from langchain_ollama.chat_models import ChatOllama | |
| from langchain_ollama.embeddings import OllamaEmbeddings | |
| from langchain_cohere.embeddings import CohereEmbeddings | |
| from langchain_cohere.chat_models import ChatCohere | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint | |
| from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
| from langchain_openai.embeddings import OpenAIEmbeddings | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_google_genai.embeddings import GoogleGenerativeAIEmbeddings | |
| from langchain_community.chat_models import ChatPerplexity | |
| from langchain_together import ChatTogether | |
| from langchain_together.embeddings import TogetherEmbeddings | |
| from langchain.chat_models.base import BaseChatModel | |
| from langchain.embeddings.base import Embeddings | |
| def split_provider_model(provider_model: str) -> Tuple[str, Optional[str]]: | |
| """ | |
| Split the provider and model name from a string. | |
| returns Tuple[str, Optional[str]] | |
| """ | |
| parts = provider_model.split(":", 1) | |
| provider = parts[0] | |
| if len(parts) > 1: | |
| model = parts[1] if parts[1] else None | |
| else: | |
| model = None | |
| return provider, model | |
| def get_model(provider_model: str, temperature: float = 0.7) -> BaseChatModel: | |
| """ | |
| Get a model from a provider and model name. | |
| returns BaseChatModel | |
| """ | |
| provider, model = split_provider_model(provider_model) | |
| try: | |
| match provider.lower(): | |
| case 'anthropic': | |
| if model is None: | |
| model = "claude-3-5-haiku-20241022" | |
| chat_llm = ChatAnthropic(model=model, temperature=temperature) | |
| case 'bedrock': | |
| if model is None: | |
| model = "us.anthropic.claude-3-5-haiku-20241022-v1:0" | |
| chat_llm = ChatBedrockConverse(model=model, temperature=temperature) | |
| case 'cohere': | |
| if model is None: | |
| model = 'command-r-plus' | |
| chat_llm = ChatCohere(model=model, temperature=temperature) | |
| case 'deepseek': | |
| if model is None: | |
| model='deepseek-chat' | |
| chat_llm = ChatOpenAI( | |
| model=model, | |
| openai_api_key=os.getenv("DEEPSEEK_API_KEY"), | |
| openai_api_base='https://api.deepseek.com', | |
| max_tokens=8192 | |
| ) | |
| case 'fireworks': | |
| if model is None: | |
| model = 'accounts/fireworks/models/llama-v3p3-70b-instruct' | |
| chat_llm = ChatFireworks(model_name=model, temperature=temperature, max_tokens=120000) | |
| case 'googlegenerativeai': | |
| if model is None: | |
| model = "gemini-2.0-flash-exp" | |
| chat_llm = ChatGoogleGenerativeAI(model=model, temperature=temperature, | |
| max_tokens=None, timeout=None, max_retries=2,) | |
| case 'groq': | |
| if model is None: | |
| model = 'qwen-2.5-32b' | |
| chat_llm = ChatGroq(model_name=model, temperature=temperature) | |
| case 'huggingface' | 'hf': | |
| if model is None: | |
| model = 'Qwen/Qwen2.5-72B-Instruct' | |
| llm = HuggingFaceEndpoint( | |
| repo_id=model, | |
| temperature=temperature, | |
| ) | |
| chat_llm = ChatHuggingFace(llm=llm) | |
| case 'ollama': | |
| if model is None: | |
| model = 'llama3.1' | |
| chat_llm = ChatOllama(model=model, temperature=temperature) | |
| case 'openai': | |
| if model is None: | |
| model = "gpt-4o-mini" | |
| chat_llm = ChatOpenAI(model=model, temperature=temperature) | |
| case 'openrouter': | |
| if model is None: | |
| model = "cognitivecomputations/dolphin3.0-mistral-24b:free" | |
| chat_llm = ChatOpenAI(model=model, temperature=temperature, base_url="https://openrouter.ai/api/v1", api_key=os.getenv("OPENROUTER_API_KEY")) | |
| case 'mistralai' | 'mistral': | |
| if model is None: | |
| model = "mistral-small-latest" | |
| chat_llm = ChatMistralAI(model=model, temperature=temperature) | |
| case 'perplexity': | |
| if model is None: | |
| model = 'sonar' | |
| chat_llm = ChatPerplexity(model=model, temperature=temperature) | |
| case 'together': | |
| if model is None: | |
| model = 'meta-llama/Llama-3.3-70B-Instruct-Turbo-Free' | |
| chat_llm = ChatTogether(model=model, temperature=temperature) | |
| case 'xai': | |
| if model is None: | |
| model = 'grok-2-1212' | |
| chat_llm = ChatOpenAI(model=model,api_key=os.getenv("XAI_API_KEY"), base_url="https://api.x.ai/v1", temperature=temperature) | |
| case _: | |
| raise ValueError(f"Unknown LLM provider {provider}") | |
| except Exception as e: | |
| raise ValueError(f"Unexpected error with {provider}: {str(e)}") | |
| return chat_llm | |
| def get_embedding_model(provider_model: str) -> Embeddings: | |
| """ | |
| Get an embedding model from a provider and model name. | |
| returns Embeddings | |
| """ | |
| provider, model = split_provider_model(provider_model) | |
| match provider.lower(): | |
| case 'bedrock': | |
| if model is None: | |
| model = "amazon.titan-embed-text-v2:0" | |
| embedding_model = BedrockEmbeddings(model_id=model) | |
| case 'cohere': | |
| if model is None: | |
| model = "embed-multilingual-v3.0" | |
| embedding_model = CohereEmbeddings(model=model) | |
| case 'fireworks': | |
| if model is None: | |
| model = 'nomic-ai/nomic-embed-text-v1.5' | |
| embedding_model = FireworksEmbeddings(model=model) | |
| case 'ollama': | |
| if model is None: | |
| model = 'nomic-embed-text:latest' | |
| embedding_model = OllamaEmbeddings(model=model) | |
| case 'openai': | |
| if model is None: | |
| model = "text-embedding-3-small" | |
| embedding_model = OpenAIEmbeddings(model=model) | |
| case 'googlegenerativeai': | |
| if model is None: | |
| model = "models/embedding-001" | |
| embedding_model = GoogleGenerativeAIEmbeddings(model=model) | |
| case 'groq': | |
| embedding_model = OpenAIEmbeddings(model="text-embedding-3-small") | |
| case 'huggingface' | 'hf': | |
| if model is None: | |
| model = 'sentence-transformers/all-MiniLM-L6-v2' | |
| embedding_model = HuggingFaceInferenceAPIEmbeddings(model_name=model, api_key=os.getenv("HUGGINGFACE_API_KEY")) | |
| case 'mistral': | |
| if model is None: | |
| model = "mistral-embed" | |
| embedding_model = MistralAIEmbeddings(model=model) | |
| case 'perplexity': | |
| raise ValueError(f"Cannot use Perplexity for embedding model") | |
| case 'together': | |
| if model is None: | |
| model = 'togethercomputer/m2-bert-80M-2k-retrieval' | |
| embedding_model = TogetherEmbeddings(model=model) | |
| case _: | |
| raise ValueError(f"Unknown LLM provider {provider}") | |
| return embedding_model | |
| import unittest | |
| from unittest.mock import patch | |
| from models import get_embedding_model # Make sure this import is correct | |
| class TestGetEmbeddingModel(unittest.TestCase): | |
| def test_bedrock_embedding(self, mock_bedrock): | |
| result = get_embedding_model('bedrock') | |
| mock_bedrock.assert_called_once_with(model_id='cohere.embed-multilingual-v3') | |
| self.assertEqual(result, mock_bedrock.return_value) | |
| def test_cohere_embedding(self, mock_cohere): | |
| result = get_embedding_model('cohere') | |
| mock_cohere.assert_called_once_with(model='embed-english-light-v3.0') | |
| self.assertEqual(result, mock_cohere.return_value) | |
| def test_fireworks_embedding(self, mock_fireworks): | |
| result = get_embedding_model('fireworks') | |
| mock_fireworks.assert_called_once_with(model='nomic-ai/nomic-embed-text-v1.5') | |
| self.assertEqual(result, mock_fireworks.return_value) | |
| def test_ollama_embedding(self, mock_ollama): | |
| result = get_embedding_model('ollama') | |
| mock_ollama.assert_called_once_with(model='nomic-embed-text:latest') | |
| self.assertEqual(result, mock_ollama.return_value) | |
| def test_openai_embedding(self, mock_openai): | |
| result = get_embedding_model('openai') | |
| mock_openai.assert_called_once_with(model='text-embedding-3-small') | |
| self.assertEqual(result, mock_openai.return_value) | |
| def test_google_embedding(self, mock_google): | |
| result = get_embedding_model('googlegenerativeai') | |
| mock_google.assert_called_once_with(model='models/embedding-001') | |
| self.assertEqual(result, mock_google.return_value) | |
| def test_together_embedding(self, mock_together): | |
| result = get_embedding_model('together') | |
| mock_together.assert_called_once_with(model='BAAI/bge-base-en-v1.5') | |
| self.assertEqual(result, mock_together.return_value) | |
| def test_invalid_provider(self): | |
| with self.assertRaises(ValueError): | |
| get_embedding_model('invalid_provider') | |
| def test_groq_provider(self): | |
| with self.assertRaises(ValueError): | |
| get_embedding_model('groq') | |
| def test_perplexity_provider(self): | |
| with self.assertRaises(ValueError): | |
| get_embedding_model('perplexity') | |
| import unittest | |
| from unittest.mock import patch | |
| from models import get_model # Make sure this import is correct | |
| class TestGetModel(unittest.TestCase): | |
| def test_bedrock_model_no_specific_model(self, mock_bedrock): | |
| result = get_model('bedrock') | |
| mock_bedrock.assert_called_once_with(model=None, temperature=0.0) | |
| self.assertEqual(result, mock_bedrock.return_value) | |
| def test_bedrock_model_with_specific_model(self, mock_bedrock): | |
| result = get_model('bedrock:specific-model') | |
| mock_bedrock.assert_called_once_with(model='specific-model', temperature=0.0) | |
| self.assertEqual(result, mock_bedrock.return_value) | |
| def test_cohere_model(self, mock_cohere): | |
| result = get_model('cohere') | |
| mock_cohere.assert_called_once_with(model='command-r-plus', temperature=0.0) | |
| self.assertEqual(result, mock_cohere.return_value) | |
| def test_fireworks_model(self, mock_fireworks): | |
| result = get_model('fireworks') | |
| mock_fireworks.assert_called_once_with( | |
| model_name='accounts/fireworks/models/llama-v3p1-8b-instruct', | |
| temperature=0.0, | |
| max_tokens=120000 | |
| ) | |
| self.assertEqual(result, mock_fireworks.return_value) | |
| def test_google_model(self, mock_google): | |
| result = get_model('googlegenerativeai') | |
| mock_google.assert_called_once_with( | |
| model="gemini-1.5-pro", | |
| temperature=0.0, | |
| max_tokens=None, | |
| timeout=None, | |
| max_retries=2 | |
| ) | |
| self.assertEqual(result, mock_google.return_value) | |
| def test_groq_model(self, mock_groq): | |
| result = get_model('groq') | |
| mock_groq.assert_called_once_with(model_name='llama-3.1-8b-instant', temperature=0.0) | |
| self.assertEqual(result, mock_groq.return_value) | |
| def test_ollama_model(self, mock_ollama): | |
| result = get_model('ollama') | |
| mock_ollama.assert_called_once_with(model='llama3.1', temperature=0.0) | |
| self.assertEqual(result, mock_ollama.return_value) | |
| def test_openai_model(self, mock_openai): | |
| result = get_model('openai') | |
| mock_openai.assert_called_once_with(model_name='gpt-4o-mini', temperature=0.0) | |
| self.assertEqual(result, mock_openai.return_value) | |
| def test_perplexity_model(self, mock_perplexity): | |
| result = get_model('perplexity') | |
| mock_perplexity.assert_called_once_with(model='llama-3.1-sonar-small-128k-online', temperature=0.0) | |
| self.assertEqual(result, mock_perplexity.return_value) | |
| def test_together_model(self, mock_together): | |
| result = get_model('together') | |
| mock_together.assert_called_once_with(model='meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo', temperature=0.0) | |
| self.assertEqual(result, mock_together.return_value) | |
| def test_invalid_provider(self): | |
| with self.assertRaises(ValueError): | |
| get_model('invalid_provider') | |
| def test_custom_temperature(self): | |
| with patch('models.ChatOpenAI') as mock_openai: | |
| result = get_model('openai', temperature=0.5) | |
| mock_openai.assert_called_once_with(model_name='gpt-4o-mini', temperature=0.5) | |
| self.assertEqual(result, mock_openai.return_value) | |
| def test_custom_model(self): | |
| with patch('models.ChatOpenAI') as mock_openai: | |
| result = get_model('openai/gpt-4') | |
| mock_openai.assert_called_once_with(model_name='gpt-4', temperature=0.0) | |
| self.assertEqual(result, mock_openai.return_value) | |
| if __name__ == '__main__': | |
| unittest.main() | |