Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from functools import partial | |
| import cv2 | |
| import gradio as gr | |
| import spaces | |
| from util.file import generate_binary_file, load_numpy_from_binary_bitwise | |
| import torch | |
| import yaml | |
| from util.basicsr_img_util import img2tensor, tensor2img | |
| from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
| from torchvision.transforms.functional import resize | |
| from guided_diffusion.gaussian_diffusion import create_sampler | |
| from guided_diffusion.swinir import SwinIR | |
| from guided_diffusion.unet import create_model | |
| def create_swinir_model(ckpt_path): | |
| cfg = { | |
| 'in_channels': 3, | |
| 'out_channels': 3, | |
| 'embed_dim': 180, | |
| 'depths': [6, 6, 6, 6, 6, 6, 6, 6], | |
| 'num_heads': [6, 6, 6, 6, 6, 6, 6, 6], | |
| 'resi_connection': '1conv', | |
| 'sf': 8 | |
| } | |
| mmse_model = SwinIR( | |
| img_size=64, | |
| patch_size=1, | |
| in_chans=cfg['in_channels'], | |
| num_out_ch=cfg['out_channels'], | |
| embed_dim=cfg['embed_dim'], | |
| depths=cfg['depths'], | |
| num_heads=cfg['num_heads'], | |
| window_size=8, | |
| mlp_ratio=2, | |
| sf=cfg['sf'], | |
| img_range=1.0, | |
| upsampler="nearest+conv", | |
| resi_connection=cfg['resi_connection'], | |
| unshuffle=True, | |
| unshuffle_scale=8 | |
| ) | |
| ckpt = torch.load(ckpt_path, map_location="cpu") | |
| if 'params_ema' in ckpt: | |
| mmse_model.load_state_dict(ckpt['params_ema']) | |
| else: | |
| state_dict = ckpt['state_dict'] | |
| state_dict = {layer_name.replace('model.', ''): weights for layer_name, weights in | |
| state_dict.items()} | |
| state_dict = {layer_name.replace('module.', ''): weights for layer_name, weights in | |
| state_dict.items()} | |
| mmse_model.load_state_dict(state_dict) | |
| for param in mmse_model.parameters(): | |
| param.requires_grad = False | |
| return mmse_model | |
| ffhq_diffusion_model = "./guided_diffusion/iddpm_ffhq512_ema500000.pth" | |
| mmse_model_ckpt = "./guided_diffusion/swinir_restoration512_L1.pth" | |
| if not os.path.exists(ffhq_diffusion_model): | |
| os.system( | |
| "wget https://github.com/zsyOAOA/DifFace/releases/download/V1.0/iddpm_ffhq512_ema500000.pth -O ./guided_diffusion/iddpm_ffhq512_ema500000.pth" | |
| ) | |
| if not os.path.exists(mmse_model_ckpt): | |
| os.system( | |
| "wget https://github.com/zsyOAOA/DifFace/releases/download/V1.0/swinir_restoration512_L1.pth -O ./guided_diffusion/swinir_restoration512_L1.pth" | |
| ) | |
| def load_yaml(file_path: str) -> dict: | |
| with open(file_path) as f: | |
| config = yaml.load(f, Loader=yaml.FullLoader) | |
| return config | |
| model_config = './guided_diffusion/ffhq512_model_config.yaml' | |
| diffusion_config = './guided_diffusion/diffusion_config.yaml' | |
| model_config = load_yaml(model_config) | |
| diffusion_config = load_yaml(diffusion_config) | |
| models = { | |
| 'main_model': create_model(**model_config), | |
| 'mmse_model': create_swinir_model('./guided_diffusion/swinir_restoration512_L1.pth') | |
| } | |
| models['main_model'].eval() | |
| models['mmse_model'].eval() | |
| def generate_reconstruction(degraded_face_img, K, T, iqa_metric, iqa_coef, loaded_indices): | |
| assert iqa_metric in ['niqe', 'clipiqa+', 'topiq_nr-face'] | |
| diffusion_config['timestep_respacing'] = T | |
| sampler = create_sampler(**diffusion_config) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = models['main_model'].to(device) | |
| mmse_model = models['mmse_model'].to(device) | |
| sample_fn = partial(sampler.p_sample_loop_blind_restoration, model=model, num_opt_noises=K, | |
| eta=1.0, iqa_metric=iqa_metric, iqa_coef=iqa_coef) | |
| if degraded_face_img is not None: | |
| mmse_img = mmse_model(degraded_face_img).clip(0, 1) * 2 - 1 | |
| x_start = torch.randn(mmse_img.shape, device=device) | |
| else: | |
| mmse_img = None | |
| x_start = torch.randn(1, 3, 512, 512, device=device) | |
| restored_face, indices = sample_fn(x_start=x_start, mmse_img=mmse_img, loaded_indices=loaded_indices) | |
| return restored_face, indices | |
| def resize(img, size): | |
| # From https://github.com/sczhou/CodeFormer/blob/master/facelib/utils/face_restoration_helper.py | |
| h, w = img.shape[0:2] | |
| scale = size / min(h, w) | |
| h, w = int(h * scale), int(w * scale) | |
| interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR | |
| return cv2.resize(img, (w, h), interpolation=interp) | |
| def enhance_faces(img, face_helper, has_aligned, K, T, iqa_metric, iqa_coef, loaded_indices): | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| face_helper.clean_all() | |
| if has_aligned: # The inputs are already aligned | |
| img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
| face_helper.cropped_faces = [img] | |
| else: | |
| face_helper.read_image(img) | |
| face_helper.input_img = resize(face_helper.input_img, 640) | |
| face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=5) | |
| face_helper.align_warp_face() | |
| if len(face_helper.cropped_faces) == 0: | |
| raise gr.Error("Could not identify any face in the image.") | |
| if has_aligned and len(face_helper.cropped_faces) > 1: | |
| raise gr.Error( | |
| "You marked that the input image is aligned, but multiple faces were detected." | |
| ) | |
| restored_faces = [] | |
| generated_indices = [] | |
| for i, cropped_face in enumerate(face_helper.cropped_faces): | |
| cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True) | |
| cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
| cur_loaded_indices = loaded_indices[i] if loaded_indices is not None else None | |
| output, indices = generate_reconstruction( | |
| cropped_face_t, | |
| K, | |
| T, | |
| iqa_metric, | |
| iqa_coef, | |
| cur_loaded_indices | |
| ) | |
| restored_face = tensor2img( | |
| output.to(torch.float32).squeeze(0), rgb2bgr=False, min_max=(-1, 1) | |
| ) | |
| restored_face = restored_face.astype("uint8") | |
| restored_faces.append(restored_face), | |
| generated_indices.append(indices) | |
| return restored_faces, generated_indices | |
| def decompress_face(K, T, iqa_metric, iqa_coef, loaded_indices): | |
| assert loaded_indices is not None | |
| output, indices = generate_reconstruction( | |
| None, | |
| K, | |
| T, | |
| iqa_metric, | |
| iqa_coef, | |
| loaded_indices | |
| ) | |
| restored_face = tensor2img( | |
| output.to(torch.float32).squeeze(0), rgb2bgr=False, min_max=(-1, 1) | |
| ).astype("uint8") | |
| return restored_face, loaded_indices | |
| def inference( | |
| img, | |
| T, | |
| K, | |
| iqa_metric, | |
| iqa_coef, | |
| aligned, | |
| bitstream=None, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| iqa_metric_to_pyiqa_name = { | |
| 'NIQE': 'niqe', | |
| 'TOPIQ': 'topiq_nr-face', | |
| 'CLIP-IQA': 'clipiqa+' | |
| } | |
| iqa_metric = iqa_metric_to_pyiqa_name[iqa_metric] | |
| indices = load_numpy_from_binary_bitwise(bitstream, K, T, 'ffhq', T) | |
| if indices is not None: | |
| indices = indices.to(device) | |
| if img is not None: | |
| img = cv2.imread(img, cv2.IMREAD_COLOR) | |
| h, w = img.shape[0:2] | |
| if h > 4500 or w > 4500: | |
| raise gr.Error("Image size too large.") | |
| face_helper = FaceRestoreHelper( | |
| 1, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model="retinaface_resnet50", | |
| save_ext="png", | |
| use_parse=True, | |
| device=device, | |
| model_rootpath=None, | |
| ) | |
| x, indices = enhance_faces( | |
| img, face_helper, aligned, K=K, T=T, iqa_metric=iqa_metric, iqa_coef=iqa_coef, | |
| loaded_indices=indices, | |
| ) | |
| else: | |
| x, indices = decompress_face( | |
| K=K, T=T, iqa_metric=iqa_metric, iqa_coef=iqa_coef, loaded_indices=indices, | |
| ) | |
| torch.cuda.empty_cache() | |
| if bitstream is None: | |
| indices = [generate_binary_file(index.numpy(), K, T, 'ffhq') for index in indices] | |
| return x, indices | |
| return x | |