Spaces:
Sleeping
Sleeping
Commit
·
253867d
1
Parent(s):
02ad7fc
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
|
| 4 |
# Load the model and processor
|
| 5 |
model_id = "openai/whisper-medium"
|
| 6 |
-
processor = WhisperProcessor.from_pretrained(model_id)
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def transcribelocal(microphone, file_upload):
|
| 12 |
# Check which input is not None
|
|
@@ -15,18 +27,8 @@ def transcribelocal(microphone, file_upload):
|
|
| 15 |
else:
|
| 16 |
audio = file_upload
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Extract the confidence score and the duration from the transcription
|
| 22 |
-
confidence = transcription.confidence
|
| 23 |
-
duration = transcription.duration
|
| 24 |
-
|
| 25 |
-
# Remove the special tokens from the transcription text
|
| 26 |
-
text = transcription.text.replace("<|startoftranscript|>", "").replace("<|endoftranscript|>", "")
|
| 27 |
-
|
| 28 |
-
# Return the text, confidence and duration as outputs
|
| 29 |
-
return text, confidence, duration
|
| 30 |
|
| 31 |
# Create a Gradio interface with two modes: realtime and file upload
|
| 32 |
iface = gr.Interface(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
|
| 4 |
# Load the model and processor
|
| 5 |
model_id = "openai/whisper-medium"
|
|
|
|
| 6 |
|
| 7 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 8 |
+
BATCH_SIZE = 8
|
| 9 |
+
pipe = pipeline(
|
| 10 |
+
task="automatic-speech-recognition",
|
| 11 |
+
model=model_id,
|
| 12 |
+
chunk_length_s=30,
|
| 13 |
+
device=device,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def transcribe(inputs, task):
|
| 17 |
+
if inputs is None:
|
| 18 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 19 |
+
|
| 20 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 21 |
+
return text
|
| 22 |
|
| 23 |
def transcribelocal(microphone, file_upload):
|
| 24 |
# Check which input is not None
|
|
|
|
| 27 |
else:
|
| 28 |
audio = file_upload
|
| 29 |
|
| 30 |
+
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 31 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Create a Gradio interface with two modes: realtime and file upload
|
| 34 |
iface = gr.Interface(
|