Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import shutil | |
| import requests | |
| import gradio as gr | |
| from huggingface_hub import Repository, InferenceClient | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| API_URL = "https://api-inference.huggingface.co/models/DataAnalyticsLab/PersianGPT-FT-Grover" | |
| BOT_NAME = "PersianGPT-FT" | |
| STOP_SEQUENCES = ["<|endoftext|>"] | |
| EXAMPLES = [ | |
| ["<$غزل$@بر لبم هر ذره داغی می توان کردن"], | |
| ["<$غزل$"], | |
| ["<$قصیده$"], | |
| ["<$مثنوی$"], | |
| ["<$غزل$@دراین سرای بی کسی، کسی به در نمی زند"] | |
| ] | |
| client = InferenceClient( | |
| API_URL, | |
| headers={"Authorization": f"Bearer {HF_TOKEN}"}, | |
| ) | |
| def format_prompt(message, history, system_prompt): | |
| prompt = "" | |
| if system_prompt: | |
| prompt += f"System: {system_prompt}\n" | |
| for user_prompt, bot_response in history: | |
| prompt += f"User: {user_prompt}\n" | |
| prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " | |
| prompt += f"""User: {message} | |
| Falcon:""" | |
| return prompt | |
| seed = 42 | |
| def generate( | |
| prompt, history, system_prompt="<|endoftext|>", temperature=0.9, max_new_tokens=250, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| global seed | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| stop_sequences=STOP_SEQUENCES, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| seed = seed + 1 | |
| formatted_prompt = format_prompt(prompt, history, system_prompt) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| for stop_str in STOP_SEQUENCES: | |
| if output.endswith(stop_str): | |
| output = output[:-len(stop_str)] | |
| output = output.rstrip() | |
| yield output | |
| yield output | |
| return output | |
| additional_inputs=[ | |
| gr.Textbox("", label="Optional system prompt"), | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=256, | |
| minimum=0, | |
| maximum=8192, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown( | |
| """ | |
| PERSIAN GPT Trained by Mojtaba Valipour @ Data Analytics Lab | |
| """ | |
| ) | |
| gr.ChatInterface( | |
| generate, | |
| examples=EXAMPLES, | |
| additional_inputs=additional_inputs, | |
| ) | |
| demo.queue(concurrency_count=100, api_open=False).launch(show_api=False) |