Spaces:
Runtime error
Runtime error
Create backup.app.py
Browse files- backup.app.py +268 -0
backup.app.py
ADDED
|
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
|
| 6 |
+
# Create tokenizer for biomed model
|
| 7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") # https://huggingface.co/d4data/biomedical-ner-all?text=asthma
|
| 9 |
+
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
| 10 |
+
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 11 |
+
|
| 12 |
+
# Matplotlib for entity graph
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
plt.switch_backend("Agg")
|
| 15 |
+
|
| 16 |
+
# Load examples from JSON
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
# Load terminology datasets:
|
| 20 |
+
basedir = os.path.dirname(__file__)
|
| 21 |
+
#dataLOINC = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv')
|
| 22 |
+
#dataPanels = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv')
|
| 23 |
+
#dataSNOMED = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
|
| 24 |
+
#dataOMS = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv')
|
| 25 |
+
#dataICD10 = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv')
|
| 26 |
+
|
| 27 |
+
dataLOINC = pd.read_csv(f'LoincTableCore.csv')
|
| 28 |
+
dataPanels = pd.read_csv(f'PanelsAndForms-ACW1208Labeled.csv')
|
| 29 |
+
dataSNOMED = pd.read_csv(f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
|
| 30 |
+
dataOMS = pd.read_csv(f'SnomedOMS.csv')
|
| 31 |
+
dataICD10 = pd.read_csv(f'ICD10Diagnosis.csv')
|
| 32 |
+
|
| 33 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
| 34 |
+
EXAMPLES = {}
|
| 35 |
+
#with open(dir_path + "\\" + "examples.json", "r") as f:
|
| 36 |
+
with open("examples.json", "r") as f:
|
| 37 |
+
example_json = json.load(f)
|
| 38 |
+
EXAMPLES = {x["text"]: x["label"] for x in example_json}
|
| 39 |
+
|
| 40 |
+
def MatchLOINC(name):
|
| 41 |
+
#basedir = os.path.dirname(__file__)
|
| 42 |
+
pd.set_option("display.max_rows", None)
|
| 43 |
+
#data = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv')
|
| 44 |
+
data = dataLOINC
|
| 45 |
+
swith=data.loc[data['COMPONENT'].str.contains(name, case=False, na=False)]
|
| 46 |
+
return swith
|
| 47 |
+
|
| 48 |
+
def MatchLOINCPanelsandForms(name):
|
| 49 |
+
#basedir = os.path.dirname(__file__)
|
| 50 |
+
#data = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv')
|
| 51 |
+
data = dataPanels
|
| 52 |
+
# Assessment Name:
|
| 53 |
+
#swith=data.loc[data['ParentName'].str.contains(name, case=False, na=False)]
|
| 54 |
+
# Assessment Question:
|
| 55 |
+
swith=data.loc[data['LoincName'].str.contains(name, case=False, na=False)]
|
| 56 |
+
return swith
|
| 57 |
+
|
| 58 |
+
def MatchSNOMED(name):
|
| 59 |
+
#basedir = os.path.dirname(__file__)
|
| 60 |
+
#data = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
|
| 61 |
+
data = dataSNOMED
|
| 62 |
+
swith=data.loc[data['term'].str.contains(name, case=False, na=False)]
|
| 63 |
+
return swith
|
| 64 |
+
|
| 65 |
+
def MatchOMS(name):
|
| 66 |
+
#basedir = os.path.dirname(__file__)
|
| 67 |
+
#data = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv')
|
| 68 |
+
data = dataOMS
|
| 69 |
+
swith=data.loc[data['SNOMED CT'].str.contains(name, case=False, na=False)]
|
| 70 |
+
return swith
|
| 71 |
+
|
| 72 |
+
def MatchICD10(name):
|
| 73 |
+
#basedir = os.path.dirname(__file__)
|
| 74 |
+
#data = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv')
|
| 75 |
+
data = dataICD10
|
| 76 |
+
swith=data.loc[data['Description'].str.contains(name, case=False, na=False)]
|
| 77 |
+
return swith
|
| 78 |
+
|
| 79 |
+
def SaveResult(text, outputfileName):
|
| 80 |
+
#try:
|
| 81 |
+
basedir = os.path.dirname(__file__)
|
| 82 |
+
savePath = outputfileName
|
| 83 |
+
print("Saving: " + text + " to " + savePath)
|
| 84 |
+
from os.path import exists
|
| 85 |
+
file_exists = exists(savePath)
|
| 86 |
+
if file_exists:
|
| 87 |
+
with open(outputfileName, "a") as f: #append
|
| 88 |
+
#for line in text:
|
| 89 |
+
f.write(str(text.replace("\n"," ")))
|
| 90 |
+
f.write('\n')
|
| 91 |
+
else:
|
| 92 |
+
with open(outputfileName, "w") as f: #write
|
| 93 |
+
#for line in text:
|
| 94 |
+
f.write(str(text.replace("\n"," ")))
|
| 95 |
+
f.write('\n')
|
| 96 |
+
#except ValueError as err:
|
| 97 |
+
# raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
|
| 98 |
+
|
| 99 |
+
return
|
| 100 |
+
|
| 101 |
+
def loadFile(filename):
|
| 102 |
+
try:
|
| 103 |
+
basedir = os.path.dirname(__file__)
|
| 104 |
+
loadPath = basedir + "\\" + filename
|
| 105 |
+
|
| 106 |
+
print("Loading: " + loadPath)
|
| 107 |
+
|
| 108 |
+
from os.path import exists
|
| 109 |
+
file_exists = exists(loadPath)
|
| 110 |
+
|
| 111 |
+
if file_exists:
|
| 112 |
+
with open(loadPath, "r") as f: #read
|
| 113 |
+
contents = f.read()
|
| 114 |
+
print(contents)
|
| 115 |
+
return contents
|
| 116 |
+
|
| 117 |
+
except ValueError as err:
|
| 118 |
+
raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
|
| 119 |
+
|
| 120 |
+
return ""
|
| 121 |
+
|
| 122 |
+
def get_today_filename():
|
| 123 |
+
from datetime import datetime
|
| 124 |
+
date = datetime.now().strftime("%Y_%m_%d-%I.%M.%S.%p")
|
| 125 |
+
#print(f"filename_{date}") 'filename_2023_01_12-03-29-22_AM'
|
| 126 |
+
return f"MedNER_{date}.csv"
|
| 127 |
+
|
| 128 |
+
def get_base(filename):
|
| 129 |
+
basedir = os.path.dirname(__file__)
|
| 130 |
+
loadPath = basedir + "\\" + filename
|
| 131 |
+
#print("Loading: " + loadPath)
|
| 132 |
+
return loadPath
|
| 133 |
+
|
| 134 |
+
def group_by_entity(raw):
|
| 135 |
+
outputFile = get_base(get_today_filename())
|
| 136 |
+
out = defaultdict(int)
|
| 137 |
+
|
| 138 |
+
for ent in raw:
|
| 139 |
+
out[ent["entity_group"]] += 1
|
| 140 |
+
myEntityGroup = ent["entity_group"]
|
| 141 |
+
print("Found entity group type: " + myEntityGroup)
|
| 142 |
+
|
| 143 |
+
if (myEntityGroup in ['Sign_symptom', 'Detailed_description', 'History', 'Activity', 'Medication' ]):
|
| 144 |
+
eterm = ent["word"].replace('#','')
|
| 145 |
+
minlength = 3
|
| 146 |
+
if len(eterm) > minlength:
|
| 147 |
+
print("Found eterm: " + eterm)
|
| 148 |
+
eterm.replace("#","")
|
| 149 |
+
g1=MatchLOINC(eterm)
|
| 150 |
+
g2=MatchLOINCPanelsandForms(eterm)
|
| 151 |
+
g3=MatchSNOMED(eterm)
|
| 152 |
+
g4=MatchOMS(eterm)
|
| 153 |
+
g5=MatchICD10(eterm)
|
| 154 |
+
sAll = ""
|
| 155 |
+
|
| 156 |
+
print("Saving to output file " + outputFile)
|
| 157 |
+
# Create harmonisation output format of input to output code, name, Text
|
| 158 |
+
|
| 159 |
+
try: # 18 fields, output to labeled CSV dataset for results teaching on scored regret changes to action plan with data inputs
|
| 160 |
+
col = " 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19"
|
| 161 |
+
|
| 162 |
+
#LOINC
|
| 163 |
+
g11 = g1['LOINC_NUM'].to_string().replace(","," ").replace("\n"," ")
|
| 164 |
+
g12 = g1['COMPONENT'].to_string().replace(","," ").replace("\n"," ")
|
| 165 |
+
s1 = ("LOINC," + myEntityGroup + "," + eterm + ",questions of ," + g12 + "," + g11 + ", Label,Value, Label,Value, Label,Value ")
|
| 166 |
+
if g11 != 'Series([] )': SaveResult(s1, outputFile)
|
| 167 |
+
|
| 168 |
+
#LOINC Panels
|
| 169 |
+
g21 = g2['Loinc'].to_string().replace(","," ").replace("\n"," ")
|
| 170 |
+
g22 = g2['LoincName'].to_string().replace(","," ").replace("\n"," ")
|
| 171 |
+
g23 = g2['ParentLoinc'].to_string().replace(","," ").replace("\n"," ")
|
| 172 |
+
g24 = g2['ParentName'].to_string().replace(","," ").replace("\n"," ")
|
| 173 |
+
# s2 = ("LOINC Panel," + myEntityGroup + "," + eterm + ",name of ," + g22 + "," + g21 + ", and Parent codes of ," + g23 + ", with Parent names of ," + g24 + ", Label,Value ")
|
| 174 |
+
s2 = ("LOINC Panel," + myEntityGroup + "," + eterm + ",name of ," + g22 + "," + g21 + "," + g24 + ", and Parent codes of ," + g23 + "," + ", Label,Value ")
|
| 175 |
+
if g21 != 'Series([] )': SaveResult(s2, outputFile)
|
| 176 |
+
|
| 177 |
+
#SNOMED
|
| 178 |
+
g31 = g3['conceptId'].to_string().replace(","," ").replace("\n"," ").replace("\l"," ").replace("\r"," ")
|
| 179 |
+
g32 = g3['term'].to_string().replace(","," ").replace("\n"," ").replace("\l"," ").replace("\r"," ")
|
| 180 |
+
s3 = ("SNOMED Concept," + myEntityGroup + "," + eterm + ",terms of ," + g32 + "," + g31 + ", Label,Value, Label,Value, Label,Value ")
|
| 181 |
+
if g31 != 'Series([] )': SaveResult(s3, outputFile)
|
| 182 |
+
|
| 183 |
+
#OMS
|
| 184 |
+
g41 = g4['Omaha Code'].to_string().replace(","," ").replace("\n"," ")
|
| 185 |
+
g42 = g4['SNOMED CT concept ID'].to_string().replace(","," ").replace("\n"," ")
|
| 186 |
+
g43 = g4['SNOMED CT'].to_string().replace(","," ").replace("\n"," ")
|
| 187 |
+
g44 = g4['PR'].to_string().replace(","," ").replace("\n"," ")
|
| 188 |
+
g45 = g4['S&S'].to_string().replace(","," ").replace("\n"," ")
|
| 189 |
+
s4 = ("OMS," + myEntityGroup + "," + eterm + ",concepts of ," + g44 + "," + g45 + ", and SNOMED codes of ," + g43 + ", and OMS problem of ," + g42 + ", and OMS Sign Symptom of ," + g41)
|
| 190 |
+
if g41 != 'Series([] )': SaveResult(s4, outputFile)
|
| 191 |
+
|
| 192 |
+
#ICD10
|
| 193 |
+
g51 = g5['Code'].to_string().replace(","," ").replace("\n"," ")
|
| 194 |
+
g52 = g5['Description'].to_string().replace(","," ").replace("\n"," ")
|
| 195 |
+
s5 = ("ICD10," + myEntityGroup + "," + eterm + ",descriptions of ," + g52 + "," + g51 + ", Label,Value, Label,Value, Label,Value ")
|
| 196 |
+
if g51 != 'Series([] )': SaveResult(s5, outputFile)
|
| 197 |
+
|
| 198 |
+
except ValueError as err:
|
| 199 |
+
raise ValueError("Error in group by entity \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
|
| 200 |
+
|
| 201 |
+
return outputFile
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def plot_to_figure(grouped):
|
| 205 |
+
fig = plt.figure()
|
| 206 |
+
plt.bar(x=list(grouped.keys()), height=list(grouped.values()))
|
| 207 |
+
plt.margins(0.2)
|
| 208 |
+
plt.subplots_adjust(bottom=0.4)
|
| 209 |
+
plt.xticks(rotation=90)
|
| 210 |
+
return fig
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def ner(text):
|
| 214 |
+
raw = pipe(text)
|
| 215 |
+
ner_content = {
|
| 216 |
+
"text": text,
|
| 217 |
+
"entities": [
|
| 218 |
+
{
|
| 219 |
+
"entity": x["entity_group"],
|
| 220 |
+
"word": x["word"],
|
| 221 |
+
"score": x["score"],
|
| 222 |
+
"start": x["start"],
|
| 223 |
+
"end": x["end"],
|
| 224 |
+
}
|
| 225 |
+
for x in raw
|
| 226 |
+
],
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
outputFile = group_by_entity(raw)
|
| 230 |
+
label = EXAMPLES.get(text, "Unknown")
|
| 231 |
+
outputDataframe = pd.read_csv(outputFile)
|
| 232 |
+
return (ner_content, outputDataframe, outputFile)
|
| 233 |
+
|
| 234 |
+
demo = gr.Blocks()
|
| 235 |
+
with demo:
|
| 236 |
+
gr.Markdown(
|
| 237 |
+
"""
|
| 238 |
+
# 🩺⚕️NLP Clinical Ontology Biomedical NER
|
| 239 |
+
"""
|
| 240 |
+
)
|
| 241 |
+
input = gr.Textbox(label="Note text", value="")
|
| 242 |
+
|
| 243 |
+
with gr.Tab("Biomedical Entity Recognition"):
|
| 244 |
+
output=[
|
| 245 |
+
gr.HighlightedText(label="NER", combine_adjacent=True),
|
| 246 |
+
#gr.JSON(label="Entity Counts"),
|
| 247 |
+
#gr.Label(label="Rating"),
|
| 248 |
+
#gr.Plot(label="Bar"),
|
| 249 |
+
gr.Dataframe(label="Dataframe"),
|
| 250 |
+
gr.File(label="File"),
|
| 251 |
+
]
|
| 252 |
+
examples=list(EXAMPLES.keys())
|
| 253 |
+
gr.Examples(examples, inputs=input)
|
| 254 |
+
input.change(fn=ner, inputs=input, outputs=output)
|
| 255 |
+
|
| 256 |
+
with gr.Tab("Clinical Terminology Resolution"):
|
| 257 |
+
with gr.Row(variant="compact"):
|
| 258 |
+
btnLOINC = gr.Button("LOINC")
|
| 259 |
+
btnPanels = gr.Button("Panels")
|
| 260 |
+
btnSNOMED = gr.Button("SNOMED")
|
| 261 |
+
btnOMS = gr.Button("OMS")
|
| 262 |
+
btnICD10 = gr.Button("ICD10")
|
| 263 |
+
|
| 264 |
+
examples=list(EXAMPLES.keys())
|
| 265 |
+
gr.Examples(examples, inputs=input)
|
| 266 |
+
input.change(fn=ner, inputs=input, outputs=output)
|
| 267 |
+
#layout="vertical"
|
| 268 |
+
demo.launch(debug=True)
|