Spaces:
Build error
Build error
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn, einsum | |
| from einops import rearrange | |
| class PreNorm(nn.Module): | |
| def __init__(self, dim, fn): | |
| super().__init__() | |
| self.norm = nn.LayerNorm(dim) | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| return self.fn(self.norm(x), **kwargs) | |
| class GELU(nn.Module): | |
| def forward(self, input): | |
| return F.gelu(input) | |
| class Attend(nn.Module): | |
| def __init__(self, dim=None): | |
| super().__init__() | |
| self.dim = dim | |
| def forward(self, input): | |
| return F.softmax(input, dim=self.dim, dtype=input.dtype) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, hidden_dim, dropout=0.): | |
| super().__init__() | |
| self.net = nn.Sequential( | |
| nn.Linear(dim, hidden_dim), | |
| GELU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_dim, dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| class Attention(nn.Module): | |
| def __init__(self, dim, heads=8, dim_head=64, dropout=0.): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| project_out = not (heads == 1 and dim_head == dim) | |
| self.heads = heads | |
| self.scale = dim_head ** -0.5 | |
| self.attend = Attend(dim=-1) | |
| self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, dim), | |
| nn.Dropout(dropout) | |
| ) if project_out else nn.Identity() | |
| def forward(self, x): | |
| b, n, _, h = *x.shape, self.heads | |
| qkv = self.to_qkv(x).chunk(3, dim=-1) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv) | |
| dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | |
| attn = self.attend(dots) | |
| out = einsum('b h i j, b h j d -> b h i d', attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| return self.to_out(out) | |
| class Conv(nn.Module): | |
| def __init__(self, dim, dropout=0.): | |
| super().__init__() | |
| self.dim = dim | |
| self.net = nn.Sequential( | |
| nn.Conv1d(dim, dim, kernel_size=3, stride=1, padding=0), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x): | |
| x = x.transpose(1, 2) | |
| x = torch.cat([x[..., -1:], x, x[..., :1]], dim=-1) | |
| x = self.net(x) | |
| return x.transpose(1, 2) | |
| class ConvTransformer(nn.Module): | |
| def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.): | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append(nn.ModuleList([ | |
| PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)), | |
| PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)), | |
| PreNorm(dim, Conv(dim, dropout=dropout)) | |
| ])) | |
| def forward(self, x): | |
| for attn, ff, cov in self.layers: | |
| x = attn(x) + x | |
| x = ff(x) + x | |
| x = cov(x) + x | |
| return x | |
| if __name__ == '__main__': | |
| token_dim = 1024 | |
| toke_len = 256 | |
| transformer = ConvTransformer(dim=token_dim, | |
| depth=6, | |
| heads=16, | |
| dim_head=64, | |
| mlp_dim=2048, | |
| dropout=0.1) | |
| total = sum(p.numel() for p in transformer.parameters()) | |
| trainable = sum(p.numel() for p in transformer.parameters() if p.requires_grad) | |
| print('parameter total:{:,}, trainable:{:,}'.format(total, trainable)) | |
| input = torch.randn(1, toke_len, token_dim) | |
| output = transformer(input) | |
| print(output.shape) | |