Spaces:
Build error
Build error
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from einops.layers.torch import Rearrange | |
| class PatchFeatureExtractor(nn.Module): | |
| x_mean = torch.FloatTensor(np.array([0.485, 0.456, 0.406])[None, :, None, None]) | |
| x_std = torch.FloatTensor(np.array([0.229, 0.224, 0.225])[None, :, None, None]) | |
| def __init__(self, patch_num=256, input_shape=None): | |
| super(PatchFeatureExtractor, self).__init__() | |
| if input_shape is None: | |
| input_shape = [3, 512, 1024] | |
| self.patch_dim = 1024 | |
| self.patch_num = patch_num | |
| img_channel = input_shape[0] | |
| img_h = input_shape[1] | |
| img_w = input_shape[2] | |
| p_h, p_w = img_h, img_w // self.patch_num | |
| p_dim = p_h * p_w * img_channel | |
| self.patch_embedding = nn.Sequential( | |
| Rearrange('b c h (p_n p_w) -> b p_n (h p_w c)', p_w=p_w), | |
| nn.Linear(p_dim, self.patch_dim) | |
| ) | |
| self.x_mean.requires_grad = False | |
| self.x_std.requires_grad = False | |
| def _prepare_x(self, x): | |
| x = x.clone() | |
| if self.x_mean.device != x.device: | |
| self.x_mean = self.x_mean.to(x.device) | |
| self.x_std = self.x_std.to(x.device) | |
| x[:, :3] = (x[:, :3] - self.x_mean) / self.x_std | |
| return x | |
| def forward(self, x): | |
| # x [b 3 512 1024] | |
| x = self._prepare_x(x) # [b 3 512 1024] | |
| x = self.patch_embedding(x) # [b 256(patch_num) 1024(d)] | |
| x = x.permute(0, 2, 1) # [b 1024(d) 256(patch_num)] | |
| return x | |
| if __name__ == '__main__': | |
| from PIL import Image | |
| extractor = PatchFeatureExtractor() | |
| img = np.array(Image.open("../../src/demo.png")).transpose((2, 0, 1)) | |
| input = torch.Tensor([img]) # 1 3 512 1024 | |
| feature = extractor(input) | |
| print(feature.shape) # 1, 1024, 256 | |