Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,49 +1,53 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
os.environ["HF_HOME"] = "/tmp/hf"
|
| 4 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
|
| 5 |
-
|
| 6 |
from fastapi import FastAPI
|
| 7 |
from pydantic import BaseModel
|
| 8 |
-
from transformers import
|
| 9 |
from fastapi.responses import StreamingResponse
|
|
|
|
| 10 |
import threading
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
|
|
|
| 17 |
|
|
|
|
| 18 |
class ChatRequest(BaseModel):
|
| 19 |
message: str
|
| 20 |
|
| 21 |
@app.post("/chat/stream")
|
| 22 |
async def chat_stream(request: ChatRequest):
|
| 23 |
-
prompt = f"Responde en espa帽ol de forma clara y breve como un asistente IA
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
input_ids = tokenizer.build_inputs_with_special_tokens(token_ids)
|
| 30 |
-
input_ids = torch.tensor([input_ids])
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
generation_kwargs = dict(
|
| 34 |
-
input_ids=input_ids,
|
| 35 |
-
|
|
|
|
| 36 |
temperature=0.7,
|
| 37 |
top_p=0.9,
|
| 38 |
do_sample=True,
|
| 39 |
streamer=streamer,
|
| 40 |
-
pad_token_id=
|
| 41 |
)
|
| 42 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 43 |
thread.start()
|
| 44 |
|
|
|
|
| 45 |
async def event_generator():
|
| 46 |
for new_text in streamer:
|
| 47 |
yield new_text
|
| 48 |
|
| 49 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
from fastapi.responses import StreamingResponse
|
| 5 |
+
import torch
|
| 6 |
import threading
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
| 10 |
+
# Cargar modelo y tokenizer de Phi-2 (usa el modelo de Hugging Face Hub)
|
| 11 |
+
model_id = "HuggingFaceTB/SmolLM2-135M"
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 14 |
|
| 15 |
+
# Modelo de entrada
|
| 16 |
class ChatRequest(BaseModel):
|
| 17 |
message: str
|
| 18 |
|
| 19 |
@app.post("/chat/stream")
|
| 20 |
async def chat_stream(request: ChatRequest):
|
| 21 |
+
prompt = f"""Responde en espa帽ol de forma clara y breve como un asistente IA.
|
| 22 |
+
Usuario: {request.message}
|
| 23 |
+
IA:"""
|
| 24 |
|
| 25 |
+
# Tokenizar entrada
|
| 26 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 27 |
+
input_ids = inputs["input_ids"]
|
| 28 |
+
attention_mask = inputs["attention_mask"]
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Streamer para obtener tokens generados poco a poco
|
| 31 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=False, skip_special_tokens=False)
|
| 32 |
+
|
| 33 |
+
# Iniciar la generaci贸n en un hilo aparte
|
| 34 |
generation_kwargs = dict(
|
| 35 |
+
input_ids=input_ids,
|
| 36 |
+
attention_mask=attention_mask,
|
| 37 |
+
max_new_tokens=48, # Puedes ajustar este valor para m谩s/menos tokens
|
| 38 |
temperature=0.7,
|
| 39 |
top_p=0.9,
|
| 40 |
do_sample=True,
|
| 41 |
streamer=streamer,
|
| 42 |
+
pad_token_id=tokenizer.eos_token_id
|
| 43 |
)
|
| 44 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 45 |
thread.start()
|
| 46 |
|
| 47 |
+
# StreamingResponse espera un generador que devuelva texto
|
| 48 |
async def event_generator():
|
| 49 |
for new_text in streamer:
|
| 50 |
yield new_text
|
| 51 |
|
| 52 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
| 53 |
+
|