Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update main.py
Browse files
    	
        main.py
    CHANGED
    
    | @@ -1,53 +1,104 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            from fastapi import FastAPI
         | 
| 2 | 
             
            from pydantic import BaseModel
         | 
| 3 | 
            -
            from  | 
| 4 | 
            -
            from fastapi.responses import StreamingResponse
         | 
| 5 | 
            -
            import torch
         | 
| 6 | 
            -
            import threading
         | 
| 7 |  | 
| 8 | 
             
            app = FastAPI()
         | 
| 9 |  | 
| 10 | 
            -
            #  | 
| 11 | 
            -
             | 
| 12 | 
            -
            tokenizer = AutoTokenizer.from_pretrained(model_id)
         | 
| 13 | 
            -
            model = AutoModelForCausalLM.from_pretrained(model_id)
         | 
| 14 |  | 
| 15 | 
             
            # Modelo de entrada
         | 
| 16 | 
            -
            class  | 
| 17 | 
            -
                 | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
                 | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
                 | 
| 27 | 
            -
                 | 
| 28 | 
            -
                 | 
| 29 | 
            -
             | 
| 30 | 
            -
                 | 
| 31 | 
            -
                 | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
                    temperature=0.7,
         | 
| 39 | 
            -
                    top_p=0.9,
         | 
| 40 | 
            -
                    do_sample=True,
         | 
| 41 | 
            -
                    streamer=streamer,
         | 
| 42 | 
            -
                    pad_token_id=tokenizer.eos_token_id
         | 
| 43 | 
            -
                )
         | 
| 44 | 
            -
                thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
         | 
| 45 | 
            -
                thread.start()
         | 
| 46 | 
            -
             | 
| 47 | 
            -
                # StreamingResponse espera un generador que devuelva texto
         | 
| 48 | 
            -
                async def event_generator():
         | 
| 49 | 
            -
                    for new_text in streamer:
         | 
| 50 | 
            -
                        yield new_text
         | 
| 51 | 
            -
             | 
| 52 | 
            -
                return StreamingResponse(event_generator(), media_type="text/plain")
         | 
| 53 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # from fastapi import FastAPI
         | 
| 2 | 
            +
            # from pydantic import BaseModel
         | 
| 3 | 
            +
            # from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
         | 
| 4 | 
            +
            # import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # app = FastAPI()
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # model_id = "HuggingFaceTB/SmolLM2-360M"
         | 
| 9 | 
            +
            # tokenizer = AutoTokenizer.from_pretrained(model_id)
         | 
| 10 | 
            +
            # model = AutoModelForCausalLM.from_pretrained(model_id)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # class ChatRequest(BaseModel):
         | 
| 13 | 
            +
            #     context: str  # Historial de la conversación, como texto
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # class NewlineStoppingCriteria(StoppingCriteria):
         | 
| 16 | 
            +
            #     def __init__(self, prompt_len, tokenizer):
         | 
| 17 | 
            +
            #         super().__init__()
         | 
| 18 | 
            +
            #         self.prompt_len = prompt_len
         | 
| 19 | 
            +
            #         self.tokenizer = tokenizer
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            #     def __call__(self, input_ids, scores, **kwargs):
         | 
| 22 | 
            +
            #         # Chequea si después del prompt hay un token de salto de línea
         | 
| 23 | 
            +
            #         gen_tokens = input_ids[0][self.prompt_len:]
         | 
| 24 | 
            +
            #         gen_text = self.tokenizer.decode(gen_tokens, skip_special_tokens=True)
         | 
| 25 | 
            +
            #         return '\n' in gen_text
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            # @app.post("/chat/demo_base")
         | 
| 28 | 
            +
            # async def chat_demo_base(request: ChatRequest):
         | 
| 29 | 
            +
            #     prompt = (
         | 
| 30 | 
            +
            #         "Conversacion 1:\n"
         | 
| 31 | 
            +
            #         "-Dauro: -Hola Juanjo.\n"
         | 
| 32 | 
            +
            #         "-Juanjo: -¿Qué tal?\n"
         | 
| 33 | 
            +
            #         "-Dauro: -Bien, ¿y tú?\n\n"
         | 
| 34 | 
            +
            #         "Conversacion 2:\n"
         | 
| 35 | 
            +
            #         "-Juanjo: -Oye Asistente, ¿puedes mirar esto?\n"
         | 
| 36 | 
            +
            #         "-Asistente: -Por supuesto, dime.\n\n"
         | 
| 37 | 
            +
            #         f"Conversacion 3:\n{request.context}\n"
         | 
| 38 | 
            +
            #     )
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            #     inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 41 | 
            +
            #     input_ids = inputs["input_ids"]
         | 
| 42 | 
            +
            #     attention_mask = inputs["attention_mask"]
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            #     stopping_criteria = StoppingCriteriaList([
         | 
| 45 | 
            +
            #         NewlineStoppingCriteria(prompt_len=input_ids.shape[1], tokenizer=tokenizer)
         | 
| 46 | 
            +
            #     ])
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            #     output = model.generate(
         | 
| 49 | 
            +
            #         input_ids=input_ids,
         | 
| 50 | 
            +
            #         attention_mask=attention_mask,
         | 
| 51 | 
            +
            #         max_new_tokens=15,
         | 
| 52 | 
            +
            #         temperature=0.9,
         | 
| 53 | 
            +
            #         top_p=0.8,
         | 
| 54 | 
            +
            #         do_sample=True,
         | 
| 55 | 
            +
            #         pad_token_id=tokenizer.eos_token_id if hasattr(tokenizer, "eos_token_id") else None,
         | 
| 56 | 
            +
            #         stopping_criteria=stopping_criteria,
         | 
| 57 | 
            +
            #     )
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            #     generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
         | 
| 60 | 
            +
            #     # Solo el fragmento después del prompt
         | 
| 61 | 
            +
            #     continuation = generated_text[len(prompt):].split('\n')[0]
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            #     return {"generated_text": generated_text}
         | 
| 64 | 
             
            from fastapi import FastAPI
         | 
| 65 | 
             
            from pydantic import BaseModel
         | 
| 66 | 
            +
            from typing import List, Optional
         | 
|  | |
|  | |
|  | |
| 67 |  | 
| 68 | 
             
            app = FastAPI()
         | 
| 69 |  | 
| 70 | 
            +
            # Almacenamiento en memoria temporal
         | 
| 71 | 
            +
            registro_actual = {}
         | 
|  | |
|  | |
| 72 |  | 
| 73 | 
             
            # Modelo de entrada
         | 
| 74 | 
            +
            class DialogoEntrada(BaseModel):
         | 
| 75 | 
            +
                enunciado: str
         | 
| 76 | 
            +
                personajes: List[str]  # lista de 3 personajes
         | 
| 77 | 
            +
                relato_inicial: str
         | 
| 78 | 
            +
                final_1: str
         | 
| 79 | 
            +
                final_2: str
         | 
| 80 | 
            +
                final_3: str
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            # Modelo de salida
         | 
| 83 | 
            +
            class DialogoSalida(BaseModel):
         | 
| 84 | 
            +
                enunciado: str
         | 
| 85 | 
            +
                personajes: List[str]
         | 
| 86 | 
            +
                relato_inicial: str
         | 
| 87 | 
            +
                final_1: str
         | 
| 88 | 
            +
                final_2: str
         | 
| 89 | 
            +
                final_3: str
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            @app.post("/entrada")
         | 
| 92 | 
            +
            async def registrar_dialogo(dialogo: DialogoEntrada):
         | 
| 93 | 
            +
                global registro_actual
         | 
| 94 | 
            +
                registro_actual = dialogo.dict()  # Sobrescribe el contenido anterior
         | 
| 95 | 
            +
                return {"status": "registro guardado"}
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 96 |  | 
| 97 | 
            +
            @app.get("/salida", response_model=Optional[DialogoSalida])
         | 
| 98 | 
            +
            async def obtener_y_limpiar():
         | 
| 99 | 
            +
                global registro_actual
         | 
| 100 | 
            +
                if not registro_actual:
         | 
| 101 | 
            +
                    return None
         | 
| 102 | 
            +
                salida = registro_actual
         | 
| 103 | 
            +
                registro_actual = {}  # Limpia después de devolver
         | 
| 104 | 
            +
                return salida
         | 
