Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -4,88 +4,185 @@ import numpy as np | |
| 4 | 
             
            import random
         | 
| 5 | 
             
            from huggingface_hub import AsyncInferenceClient
         | 
| 6 | 
             
            from translatepy import Translator
         | 
| 7 | 
            -
            import requests
         | 
| 8 | 
            -
            import re
         | 
| 9 | 
            -
            import asyncio
         | 
| 10 | 
            -
            from PIL import Image
         | 
| 11 | 
             
            from gradio_client import Client, handle_file
         | 
|  | |
| 12 | 
             
            from huggingface_hub import login
         | 
| 13 | 
            -
            from  | 
| 14 |  | 
| 15 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 16 | 
            -
            HF_TOKEN =  | 
| 17 | 
            -
            HF_TOKEN_UPSCALER =  | 
| 18 |  | 
|  | |
| 19 | 
             
            def enable_lora(lora_add, basemodel):
         | 
|  | |
| 20 | 
             
                return basemodel if not lora_add else lora_add
         | 
| 21 |  | 
|  | |
| 22 | 
             
            async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
         | 
| 23 | 
             
                try:
         | 
| 24 | 
             
                    if seed == -1:
         | 
| 25 | 
             
                        seed = random.randint(0, MAX_SEED)
         | 
| 26 | 
             
                    seed = int(seed)
         | 
|  | |
|  | |
| 27 | 
             
                    text = str(Translator().translate(prompt, 'English')) + "," + lora_word
         | 
|  | |
|  | |
| 28 | 
             
                    client = AsyncInferenceClient()
         | 
| 29 | 
             
                    image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
         | 
| 30 | 
             
                    return image, seed
         | 
| 31 | 
             
                except Exception as e:
         | 
| 32 | 
            -
                    print(f"Error  | 
| 33 | 
             
                    return None, None
         | 
| 34 |  | 
|  | |
| 35 | 
             
            def get_upscale_finegrain(prompt, img_path, upscale_factor):
         | 
| 36 | 
             
                try:
         | 
|  | |
| 37 | 
             
                    client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
         | 
| 38 | 
            -
                    result = client.predict( | 
| 39 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 40 | 
             
                except Exception as e:
         | 
| 41 | 
            -
                    print(f"Error  | 
| 42 | 
             
                    return None
         | 
| 43 | 
            -
             | 
|  | |
| 44 | 
             
            async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
         | 
|  | |
|  | |
| 45 | 
             
                model = enable_lora(lora_model, basemodel) if process_lora else basemodel
         | 
|  | |
|  | |
| 46 | 
             
                image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
         | 
| 47 | 
            -
                if image is None:
         | 
| 48 | 
            -
                    return [None, None]
         | 
| 49 |  | 
|  | |
|  | |
|  | |
|  | |
| 50 | 
             
                image_path = "temp_image.jpg"
         | 
|  | |
| 51 | 
             
                image.save(image_path, format="JPEG")
         | 
| 52 | 
            -
             | 
|  | |
| 53 | 
             
                if process_upscale:
         | 
|  | |
| 54 | 
             
                    upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
         | 
| 55 | 
            -
                    if upscale_image_path is not None:
         | 
| 56 | 
            -
                         | 
| 57 | 
            -
                         | 
| 58 | 
            -
                        return [image_path, "upscale_image.jpg"]
         | 
| 59 | 
             
                    else:
         | 
| 60 | 
            -
                        print(" | 
| 61 | 
            -
             | 
| 62 | 
            -
                 | 
| 63 | 
            -
                    return [image_path, image_path]
         | 
| 64 |  | 
|  | |
| 65 | 
             
            css = """
         | 
| 66 | 
            -
            #col- | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 67 | 
             
            """
         | 
| 68 |  | 
| 69 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 70 | 
             
                with gr.Column(elem_id="col-container"):
         | 
|  | |
| 71 | 
             
                    with gr.Row():
         | 
| 72 | 
            -
                         | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
                             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
                             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
                                 | 
| 86 | 
            -
                                 | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
             | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 4 | 
             
            import random
         | 
| 5 | 
             
            from huggingface_hub import AsyncInferenceClient
         | 
| 6 | 
             
            from translatepy import Translator
         | 
|  | |
|  | |
|  | |
|  | |
| 7 | 
             
            from gradio_client import Client, handle_file
         | 
| 8 | 
            +
            from PIL import Image
         | 
| 9 | 
             
            from huggingface_hub import login
         | 
| 10 | 
            +
            from themes import IndonesiaTheme  # Import custom IndonesiaTheme
         | 
| 11 |  | 
| 12 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 13 | 
            +
            HF_TOKEN = "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"
         | 
| 14 | 
            +
            HF_TOKEN_UPSCALER = "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"
         | 
| 15 |  | 
| 16 | 
            +
            # Function to enable LoRA if selected
         | 
| 17 | 
             
            def enable_lora(lora_add, basemodel):
         | 
| 18 | 
            +
                print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}")
         | 
| 19 | 
             
                return basemodel if not lora_add else lora_add
         | 
| 20 |  | 
| 21 | 
            +
            # Function to generate image
         | 
| 22 | 
             
            async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
         | 
| 23 | 
             
                try:
         | 
| 24 | 
             
                    if seed == -1:
         | 
| 25 | 
             
                        seed = random.randint(0, MAX_SEED)
         | 
| 26 | 
             
                    seed = int(seed)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                    print(f"[-] Menerjemahkan prompt: {prompt}")
         | 
| 29 | 
             
                    text = str(Translator().translate(prompt, 'English')) + "," + lora_word
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                    print(f"[-] Generating image with prompt: {text}, model: {model}")
         | 
| 32 | 
             
                    client = AsyncInferenceClient()
         | 
| 33 | 
             
                    image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
         | 
| 34 | 
             
                    return image, seed
         | 
| 35 | 
             
                except Exception as e:
         | 
| 36 | 
            +
                    print(f"[-] Error generating image: {e}")
         | 
| 37 | 
             
                    return None, None
         | 
| 38 |  | 
| 39 | 
            +
            # Function to upscale image
         | 
| 40 | 
             
            def get_upscale_finegrain(prompt, img_path, upscale_factor):
         | 
| 41 | 
             
                try:
         | 
| 42 | 
            +
                    print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
         | 
| 43 | 
             
                    client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
         | 
| 44 | 
            +
                    result = client.predict(
         | 
| 45 | 
            +
                        input_image=handle_file(img_path), 
         | 
| 46 | 
            +
                        prompt=prompt, 
         | 
| 47 | 
            +
                        negative_prompt="worst quality, low quality, normal quality",
         | 
| 48 | 
            +
                        upscale_factor=upscale_factor,
         | 
| 49 | 
            +
                        controlnet_scale=0.6,
         | 
| 50 | 
            +
                        controlnet_decay=1,
         | 
| 51 | 
            +
                        condition_scale=6,
         | 
| 52 | 
            +
                        denoise_strength=0.35, 
         | 
| 53 | 
            +
                        num_inference_steps=18,
         | 
| 54 | 
            +
                        solver="DDIM", 
         | 
| 55 | 
            +
                        api_name="/process"
         | 
| 56 | 
            +
                    )
         | 
| 57 | 
            +
                    print(f"[-] Proses upscaling berhasil.")
         | 
| 58 | 
            +
                    return result[1]  # Return upscale image path
         | 
| 59 | 
             
                except Exception as e:
         | 
| 60 | 
            +
                    print(f"[-] Error scaling image: {e}")
         | 
| 61 | 
             
                    return None
         | 
| 62 | 
            +
                    
         | 
| 63 | 
            +
            # Main function to generate images and optionally upscale
         | 
| 64 | 
             
            async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
         | 
| 65 | 
            +
                print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
         | 
| 66 | 
            +
                
         | 
| 67 | 
             
                model = enable_lora(lora_model, basemodel) if process_lora else basemodel
         | 
| 68 | 
            +
                print(f"[-] Menggunakan model: {model}")
         | 
| 69 | 
            +
             | 
| 70 | 
             
                image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
         | 
|  | |
|  | |
| 71 |  | 
| 72 | 
            +
                if image is None:
         | 
| 73 | 
            +
                    print("[-] Image generation failed.")
         | 
| 74 | 
            +
                    return []
         | 
| 75 | 
            +
             | 
| 76 | 
             
                image_path = "temp_image.jpg"
         | 
| 77 | 
            +
                print(f"[-] Menyimpan gambar sementara di: {image_path}")
         | 
| 78 | 
             
                image.save(image_path, format="JPEG")
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                upscale_image_path = None
         | 
| 81 | 
             
                if process_upscale:
         | 
| 82 | 
            +
                    print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
         | 
| 83 | 
             
                    upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
         | 
| 84 | 
            +
                    if upscale_image_path is not None and os.path.exists(upscale_image_path):
         | 
| 85 | 
            +
                        print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
         | 
| 86 | 
            +
                        return [image_path, upscale_image_path]  # Return both images
         | 
|  | |
| 87 | 
             
                    else:
         | 
| 88 | 
            +
                        print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.")
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                return [image_path]
         | 
|  | |
| 91 |  | 
| 92 | 
            +
            # CSS for styling the interface
         | 
| 93 | 
             
            css = """
         | 
| 94 | 
            +
            #col-left, #col-mid, #col-right {
         | 
| 95 | 
            +
                margin: 0 auto;
         | 
| 96 | 
            +
                max-width: 400px;
         | 
| 97 | 
            +
                padding: 10px;
         | 
| 98 | 
            +
                border-radius: 15px;
         | 
| 99 | 
            +
                background-color: #f9f9f9;
         | 
| 100 | 
            +
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
         | 
| 101 | 
            +
            }
         | 
| 102 | 
            +
            #banner {
         | 
| 103 | 
            +
                width: 100%;
         | 
| 104 | 
            +
                text-align: center;
         | 
| 105 | 
            +
                margin-bottom: 20px;
         | 
| 106 | 
            +
            }
         | 
| 107 | 
            +
            #run-button {
         | 
| 108 | 
            +
                background-color: #ff4b5c;
         | 
| 109 | 
            +
                color: white;
         | 
| 110 | 
            +
                font-weight: bold;
         | 
| 111 | 
            +
                padding: 10px;
         | 
| 112 | 
            +
                border-radius: 10px;
         | 
| 113 | 
            +
                cursor: pointer;
         | 
| 114 | 
            +
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
         | 
| 115 | 
            +
            }
         | 
| 116 | 
            +
            #footer {
         | 
| 117 | 
            +
                text-align: center;
         | 
| 118 | 
            +
                margin-top: 20px;
         | 
| 119 | 
            +
                color: silver;
         | 
| 120 | 
            +
            }
         | 
| 121 | 
             
            """
         | 
| 122 |  | 
| 123 | 
            +
            # Creating Gradio interface
         | 
| 124 | 
            +
            with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
         | 
| 125 | 
            +
                # Displaying the application title
         | 
| 126 | 
            +
                gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')
         | 
| 127 | 
            +
             | 
| 128 | 
             
                with gr.Column(elem_id="col-container"):
         | 
| 129 | 
            +
                    # Output section (replacing ImageSlider with gr.Gallery)
         | 
| 130 | 
             
                    with gr.Row():
         | 
| 131 | 
            +
                        output_res = gr.Gallery(label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto")
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    # User input section split into two columns
         | 
| 134 | 
            +
                    with gr.Row():
         | 
| 135 | 
            +
                        # Column 1: Input prompt, LoRA, and base model
         | 
| 136 | 
            +
                        with gr.Column(scale=1, elem_id="col-left"):
         | 
| 137 | 
            +
                            prompt = gr.Textbox(
         | 
| 138 | 
            +
                                label="📜 Deskripsi Gambar", 
         | 
| 139 | 
            +
                                placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.",
         | 
| 140 | 
            +
                                elem_id="textbox-prompt"
         | 
| 141 | 
            +
                            )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                            basemodel_choice = gr.Dropdown(
         | 
| 144 | 
            +
                                label="🖼️ Pilih Model", 
         | 
| 145 | 
            +
                                choices=[
         | 
| 146 | 
            +
                                    "black-forest-labs/FLUX.1-schnell", 
         | 
| 147 | 
            +
                                    "black-forest-labs/FLUX.1-DEV", 
         | 
| 148 | 
            +
                                    "enhanceaiteam/Flux-uncensored", 
         | 
| 149 | 
            +
                                    "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", 
         | 
| 150 | 
            +
                                    "Shakker-Labs/FLUX.1-dev-LoRA-add-details", 
         | 
| 151 | 
            +
                                    "city96/FLUX.1-dev-gguf"
         | 
| 152 | 
            +
                                ], 
         | 
| 153 | 
            +
                                value="black-forest-labs/FLUX.1-schnell"
         | 
| 154 | 
            +
                            )
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                            lora_model_choice = gr.Dropdown(
         | 
| 157 | 
            +
                                label="🎨 Pilih LoRA", 
         | 
| 158 | 
            +
                                choices=[
         | 
| 159 | 
            +
                                    "Shakker-Labs/FLUX.1-dev-LoRA-add-details", 
         | 
| 160 | 
            +
                                    "XLabs-AI/flux-RealismLora", 
         | 
| 161 | 
            +
                                    "enhanceaiteam/Flux-uncensored"
         | 
| 162 | 
            +
                                ], 
         | 
| 163 | 
            +
                                value="XLabs-AI/flux-RealismLora"
         | 
| 164 | 
            +
                            )
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                            process_lora = gr.Checkbox(label="🎨 Aktifkan LoRA")
         | 
| 167 | 
            +
                            process_upscale = gr.Checkbox(label="🔍 Aktifkan Peningkatan Resolusi")
         | 
| 168 | 
            +
                            upscale_factor = gr.Radio(label="🔍 Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                        # Column 2: Advanced options (always open)
         | 
| 171 | 
            +
                        with gr.Column(scale=1, elem_id="col-right"):
         | 
| 172 | 
            +
                            with gr.Accordion(label="⚙️ Opsi Lanjutan", open=True):
         | 
| 173 | 
            +
                                width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280)
         | 
| 174 | 
            +
                                height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768)
         | 
| 175 | 
            +
                                scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8)
         | 
| 176 | 
            +
                                steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8)
         | 
| 177 | 
            +
                                seed = gr.Number(label="Seed", value=-1)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    # Button to generate image
         | 
| 180 | 
            +
                    btn = gr.Button("🚀 Buat Gambar", elem_id="generate-btn")
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    # Running the `gen` function when "Generate" button is pressed
         | 
| 183 | 
            +
                    btn.click(fn=gen, inputs=[
         | 
| 184 | 
            +
                        prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
         | 
| 185 | 
            +
                    ], outputs=output_res)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            # Launching the Gradio app
         | 
| 188 | 
            +
            WallpaperFluxMaker.queue(api_open=False).launch(show_api=False)
         | 
