Spaces:
Runtime error
Runtime error
| import glob | |
| import os | |
| import re | |
| import torch | |
| from modules import shared, devices, sd_models, errors | |
| metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} | |
| re_digits = re.compile(r"\d+") | |
| re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)") | |
| re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)") | |
| re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)") | |
| re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)") | |
| def convert_diffusers_name_to_compvis(key): | |
| def match(match_list, regex): | |
| r = re.match(regex, key) | |
| if not r: | |
| return False | |
| match_list.clear() | |
| match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) | |
| return True | |
| m = [] | |
| if match(m, re_unet_down_blocks): | |
| return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}" | |
| if match(m, re_unet_mid_blocks): | |
| return f"diffusion_model_middle_block_1_{m[1]}" | |
| if match(m, re_unet_up_blocks): | |
| return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}" | |
| if match(m, re_text_block): | |
| return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" | |
| return key | |
| class LoraOnDisk: | |
| def __init__(self, name, filename): | |
| self.name = name | |
| self.filename = filename | |
| self.metadata = {} | |
| _, ext = os.path.splitext(filename) | |
| if ext.lower() == ".safetensors": | |
| try: | |
| self.metadata = sd_models.read_metadata_from_safetensors(filename) | |
| except Exception as e: | |
| errors.display(e, f"reading lora {filename}") | |
| if self.metadata: | |
| m = {} | |
| for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): | |
| m[k] = v | |
| self.metadata = m | |
| self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text | |
| class LoraModule: | |
| def __init__(self, name): | |
| self.name = name | |
| self.multiplier = 1.0 | |
| self.modules = {} | |
| self.mtime = None | |
| class LoraUpDownModule: | |
| def __init__(self): | |
| self.up = None | |
| self.down = None | |
| self.alpha = None | |
| def assign_lora_names_to_compvis_modules(sd_model): | |
| lora_layer_mapping = {} | |
| for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): | |
| lora_name = name.replace(".", "_") | |
| lora_layer_mapping[lora_name] = module | |
| module.lora_layer_name = lora_name | |
| for name, module in shared.sd_model.model.named_modules(): | |
| lora_name = name.replace(".", "_") | |
| lora_layer_mapping[lora_name] = module | |
| module.lora_layer_name = lora_name | |
| sd_model.lora_layer_mapping = lora_layer_mapping | |
| def load_lora(name, filename): | |
| lora = LoraModule(name) | |
| lora.mtime = os.path.getmtime(filename) | |
| sd = sd_models.read_state_dict(filename) | |
| keys_failed_to_match = [] | |
| for key_diffusers, weight in sd.items(): | |
| fullkey = convert_diffusers_name_to_compvis(key_diffusers) | |
| key, lora_key = fullkey.split(".", 1) | |
| sd_module = shared.sd_model.lora_layer_mapping.get(key, None) | |
| if sd_module is None: | |
| keys_failed_to_match.append(key_diffusers) | |
| continue | |
| lora_module = lora.modules.get(key, None) | |
| if lora_module is None: | |
| lora_module = LoraUpDownModule() | |
| lora.modules[key] = lora_module | |
| if lora_key == "alpha": | |
| lora_module.alpha = weight.item() | |
| continue | |
| if type(sd_module) == torch.nn.Linear: | |
| module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) | |
| elif type(sd_module) == torch.nn.Conv2d: | |
| module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) | |
| else: | |
| assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' | |
| with torch.no_grad(): | |
| module.weight.copy_(weight) | |
| module.to(device=devices.device, dtype=devices.dtype) | |
| if lora_key == "lora_up.weight": | |
| lora_module.up = module | |
| elif lora_key == "lora_down.weight": | |
| lora_module.down = module | |
| else: | |
| assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha' | |
| if len(keys_failed_to_match) > 0: | |
| print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") | |
| return lora | |
| def load_loras(names, multipliers=None): | |
| already_loaded = {} | |
| for lora in loaded_loras: | |
| if lora.name in names: | |
| already_loaded[lora.name] = lora | |
| loaded_loras.clear() | |
| loras_on_disk = [available_loras.get(name, None) for name in names] | |
| if any([x is None for x in loras_on_disk]): | |
| list_available_loras() | |
| loras_on_disk = [available_loras.get(name, None) for name in names] | |
| for i, name in enumerate(names): | |
| lora = already_loaded.get(name, None) | |
| lora_on_disk = loras_on_disk[i] | |
| if lora_on_disk is not None: | |
| if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: | |
| lora = load_lora(name, lora_on_disk.filename) | |
| if lora is None: | |
| print(f"Couldn't find Lora with name {name}") | |
| continue | |
| lora.multiplier = multipliers[i] if multipliers else 1.0 | |
| loaded_loras.append(lora) | |
| def lora_forward(module, input, res): | |
| if len(loaded_loras) == 0: | |
| return res | |
| lora_layer_name = getattr(module, 'lora_layer_name', None) | |
| for lora in loaded_loras: | |
| module = lora.modules.get(lora_layer_name, None) | |
| if module is not None: | |
| if shared.opts.lora_apply_to_outputs and res.shape == input.shape: | |
| res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) | |
| else: | |
| res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) | |
| return res | |
| def lora_Linear_forward(self, input): | |
| return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input)) | |
| def lora_Conv2d_forward(self, input): | |
| return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input)) | |
| def list_available_loras(): | |
| available_loras.clear() | |
| os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) | |
| candidates = \ | |
| glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \ | |
| glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \ | |
| glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True) | |
| for filename in sorted(candidates): | |
| if os.path.isdir(filename): | |
| continue | |
| name = os.path.splitext(os.path.basename(filename))[0] | |
| available_loras[name] = LoraOnDisk(name, filename) | |
| available_loras = {} | |
| loaded_loras = [] | |
| list_available_loras() | |