Spaces:
Runtime error
Runtime error
| """ | |
| download checkpoints to ./weights beforehand | |
| python scripts/download_pretrained_models.py facelib | |
| python scripts/download_pretrained_models.py CodeFormer | |
| wget 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth' | |
| """ | |
| import tempfile | |
| import cv2 | |
| import torch | |
| from torchvision.transforms.functional import normalize | |
| from cog import BasePredictor, Input, Path | |
| from basicsr.utils import imwrite, img2tensor, tensor2img | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from basicsr.utils.realesrgan_utils import RealESRGANer | |
| from basicsr.utils.registry import ARCH_REGISTRY | |
| from facelib.utils.face_restoration_helper import FaceRestoreHelper | |
| class Predictor(BasePredictor): | |
| def setup(self): | |
| """Load the model into memory to make running multiple predictions efficient""" | |
| self.device = "cuda:0" | |
| self.bg_upsampler = set_realesrgan() | |
| self.net = ARCH_REGISTRY.get("CodeFormer")( | |
| dim_embd=512, | |
| codebook_size=1024, | |
| n_head=8, | |
| n_layers=9, | |
| connect_list=["32", "64", "128", "256"], | |
| ).to(self.device) | |
| ckpt_path = "weights/CodeFormer/codeformer.pth" | |
| checkpoint = torch.load(ckpt_path)[ | |
| "params_ema" | |
| ] # update file permission if cannot load | |
| self.net.load_state_dict(checkpoint) | |
| self.net.eval() | |
| def predict( | |
| self, | |
| image: Path = Input(description="Input image"), | |
| codeformer_fidelity: float = Input( | |
| default=0.5, | |
| ge=0, | |
| le=1, | |
| description="Balance the quality (lower number) and fidelity (higher number).", | |
| ), | |
| background_enhance: bool = Input( | |
| description="Enhance background image with Real-ESRGAN", default=True | |
| ), | |
| face_upsample: bool = Input( | |
| description="Upsample restored faces for high-resolution AI-created images", | |
| default=True, | |
| ), | |
| upscale: int = Input( | |
| description="The final upsampling scale of the image", | |
| default=2, | |
| ), | |
| ) -> Path: | |
| """Run a single prediction on the model""" | |
| # take the default setting for the demo | |
| has_aligned = False | |
| only_center_face = False | |
| draw_box = False | |
| detection_model = "retinaface_resnet50" | |
| self.face_helper = FaceRestoreHelper( | |
| upscale, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model=detection_model, | |
| save_ext="png", | |
| use_parse=True, | |
| device=self.device, | |
| ) | |
| bg_upsampler = self.bg_upsampler if background_enhance else None | |
| face_upsampler = self.bg_upsampler if face_upsample else None | |
| img = cv2.imread(str(image), cv2.IMREAD_COLOR) | |
| if has_aligned: | |
| # the input faces are already cropped and aligned | |
| img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
| self.face_helper.cropped_faces = [img] | |
| else: | |
| self.face_helper.read_image(img) | |
| # get face landmarks for each face | |
| num_det_faces = self.face_helper.get_face_landmarks_5( | |
| only_center_face=only_center_face, resize=640, eye_dist_threshold=5 | |
| ) | |
| print(f"\tdetect {num_det_faces} faces") | |
| # align and warp each face | |
| self.face_helper.align_warp_face() | |
| # face restoration for each cropped face | |
| for idx, cropped_face in enumerate(self.face_helper.cropped_faces): | |
| # prepare data | |
| cropped_face_t = img2tensor( | |
| cropped_face / 255.0, bgr2rgb=True, float32=True | |
| ) | |
| normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
| cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) | |
| try: | |
| with torch.no_grad(): | |
| output = self.net( | |
| cropped_face_t, w=codeformer_fidelity, adain=True | |
| )[0] | |
| restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
| del output | |
| torch.cuda.empty_cache() | |
| except Exception as error: | |
| print(f"\tFailed inference for CodeFormer: {error}") | |
| restored_face = tensor2img( | |
| cropped_face_t, rgb2bgr=True, min_max=(-1, 1) | |
| ) | |
| restored_face = restored_face.astype("uint8") | |
| self.face_helper.add_restored_face(restored_face) | |
| # paste_back | |
| if not has_aligned: | |
| # upsample the background | |
| if bg_upsampler is not None: | |
| # Now only support RealESRGAN for upsampling background | |
| bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] | |
| else: | |
| bg_img = None | |
| self.face_helper.get_inverse_affine(None) | |
| # paste each restored face to the input image | |
| if face_upsample and face_upsampler is not None: | |
| restored_img = self.face_helper.paste_faces_to_input_image( | |
| upsample_img=bg_img, | |
| draw_box=draw_box, | |
| face_upsampler=face_upsampler, | |
| ) | |
| else: | |
| restored_img = self.face_helper.paste_faces_to_input_image( | |
| upsample_img=bg_img, draw_box=draw_box | |
| ) | |
| # save restored img | |
| out_path = Path(tempfile.mkdtemp()) / "output.png" | |
| if not has_aligned and restored_img is not None: | |
| imwrite(restored_img, str(out_path)) | |
| return out_path | |
| def imread(img_path): | |
| img = cv2.imread(img_path) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| return img | |
| def set_realesrgan(): | |
| if not torch.cuda.is_available(): # CPU | |
| import warnings | |
| warnings.warn( | |
| "The unoptimized RealESRGAN is slow on CPU. We do not use it. " | |
| "If you really want to use it, please modify the corresponding codes.", | |
| category=RuntimeWarning, | |
| ) | |
| bg_upsampler = None | |
| else: | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=2, | |
| ) | |
| bg_upsampler = RealESRGANer( | |
| scale=2, | |
| model_path="./weights/RealESRGAN_x2plus.pth", | |
| model=model, | |
| tile=400, | |
| tile_pad=40, | |
| pre_pad=0, | |
| half=True, | |
| ) | |
| return bg_upsampler | |