Spaces:
Runtime error
Runtime error
| from functools import partial | |
| import json | |
| import math | |
| import warnings | |
| from jsonmerge import merge | |
| from . import augmentation, layers, models, utils | |
| def load_config(file): | |
| defaults = { | |
| 'model': { | |
| 'sigma_data': 1., | |
| 'patch_size': 1, | |
| 'dropout_rate': 0., | |
| 'augment_wrapper': True, | |
| 'augment_prob': 0., | |
| 'mapping_cond_dim': 0, | |
| 'unet_cond_dim': 0, | |
| 'cross_cond_dim': 0, | |
| 'cross_attn_depths': None, | |
| 'skip_stages': 0, | |
| 'has_variance': False, | |
| }, | |
| 'dataset': { | |
| 'type': 'imagefolder', | |
| }, | |
| 'optimizer': { | |
| 'type': 'adamw', | |
| 'lr': 1e-4, | |
| 'betas': [0.95, 0.999], | |
| 'eps': 1e-6, | |
| 'weight_decay': 1e-3, | |
| }, | |
| 'lr_sched': { | |
| 'type': 'inverse', | |
| 'inv_gamma': 20000., | |
| 'power': 1., | |
| 'warmup': 0.99, | |
| }, | |
| 'ema_sched': { | |
| 'type': 'inverse', | |
| 'power': 0.6667, | |
| 'max_value': 0.9999 | |
| }, | |
| } | |
| config = json.load(file) | |
| return merge(defaults, config) | |
| def make_model(config): | |
| config = config['model'] | |
| assert config['type'] == 'image_v1' | |
| model = models.ImageDenoiserModelV1( | |
| config['input_channels'], | |
| config['mapping_out'], | |
| config['depths'], | |
| config['channels'], | |
| config['self_attn_depths'], | |
| config['cross_attn_depths'], | |
| patch_size=config['patch_size'], | |
| dropout_rate=config['dropout_rate'], | |
| mapping_cond_dim=config['mapping_cond_dim'] + (9 if config['augment_wrapper'] else 0), | |
| unet_cond_dim=config['unet_cond_dim'], | |
| cross_cond_dim=config['cross_cond_dim'], | |
| skip_stages=config['skip_stages'], | |
| has_variance=config['has_variance'], | |
| ) | |
| if config['augment_wrapper']: | |
| model = augmentation.KarrasAugmentWrapper(model) | |
| return model | |
| def make_denoiser_wrapper(config): | |
| config = config['model'] | |
| sigma_data = config.get('sigma_data', 1.) | |
| has_variance = config.get('has_variance', False) | |
| if not has_variance: | |
| return partial(layers.Denoiser, sigma_data=sigma_data) | |
| return partial(layers.DenoiserWithVariance, sigma_data=sigma_data) | |
| def make_sample_density(config): | |
| sd_config = config['sigma_sample_density'] | |
| sigma_data = config['sigma_data'] | |
| if sd_config['type'] == 'lognormal': | |
| loc = sd_config['mean'] if 'mean' in sd_config else sd_config['loc'] | |
| scale = sd_config['std'] if 'std' in sd_config else sd_config['scale'] | |
| return partial(utils.rand_log_normal, loc=loc, scale=scale) | |
| if sd_config['type'] == 'loglogistic': | |
| loc = sd_config['loc'] if 'loc' in sd_config else math.log(sigma_data) | |
| scale = sd_config['scale'] if 'scale' in sd_config else 0.5 | |
| min_value = sd_config['min_value'] if 'min_value' in sd_config else 0. | |
| max_value = sd_config['max_value'] if 'max_value' in sd_config else float('inf') | |
| return partial(utils.rand_log_logistic, loc=loc, scale=scale, min_value=min_value, max_value=max_value) | |
| if sd_config['type'] == 'loguniform': | |
| min_value = sd_config['min_value'] if 'min_value' in sd_config else config['sigma_min'] | |
| max_value = sd_config['max_value'] if 'max_value' in sd_config else config['sigma_max'] | |
| return partial(utils.rand_log_uniform, min_value=min_value, max_value=max_value) | |
| if sd_config['type'] == 'v-diffusion': | |
| min_value = sd_config['min_value'] if 'min_value' in sd_config else 0. | |
| max_value = sd_config['max_value'] if 'max_value' in sd_config else float('inf') | |
| return partial(utils.rand_v_diffusion, sigma_data=sigma_data, min_value=min_value, max_value=max_value) | |
| if sd_config['type'] == 'split-lognormal': | |
| loc = sd_config['mean'] if 'mean' in sd_config else sd_config['loc'] | |
| scale_1 = sd_config['std_1'] if 'std_1' in sd_config else sd_config['scale_1'] | |
| scale_2 = sd_config['std_2'] if 'std_2' in sd_config else sd_config['scale_2'] | |
| return partial(utils.rand_split_log_normal, loc=loc, scale_1=scale_1, scale_2=scale_2) | |
| raise ValueError('Unknown sample density type') | |