Spaces:
Runtime error
Runtime error
stable-diffusion-webui-master
/
repositories
/stable-diffusion-stability-ai
/scripts
/gradio
/depth2img.py
| import sys | |
| import torch | |
| import numpy as np | |
| import gradio as gr | |
| from PIL import Image | |
| from omegaconf import OmegaConf | |
| from einops import repeat, rearrange | |
| from pytorch_lightning import seed_everything | |
| from imwatermark import WatermarkEncoder | |
| from scripts.txt2img import put_watermark | |
| from ldm.util import instantiate_from_config | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from ldm.data.util import AddMiDaS | |
| torch.set_grad_enabled(False) | |
| def initialize_model(config, ckpt): | |
| config = OmegaConf.load(config) | |
| model = instantiate_from_config(config.model) | |
| model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) | |
| device = torch.device( | |
| "cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| sampler = DDIMSampler(model) | |
| return sampler | |
| def make_batch_sd( | |
| image, | |
| txt, | |
| device, | |
| num_samples=1, | |
| model_type="dpt_hybrid" | |
| ): | |
| image = np.array(image.convert("RGB")) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| # sample['jpg'] is tensor hwc in [-1, 1] at this point | |
| midas_trafo = AddMiDaS(model_type=model_type) | |
| batch = { | |
| "jpg": image, | |
| "txt": num_samples * [txt], | |
| } | |
| batch = midas_trafo(batch) | |
| batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w') | |
| batch["jpg"] = repeat(batch["jpg"].to(device=device), | |
| "1 ... -> n ...", n=num_samples) | |
| batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to( | |
| device=device), "1 ... -> n ...", n=num_samples) | |
| return batch | |
| def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None, | |
| do_full_sample=False): | |
| device = torch.device( | |
| "cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = sampler.model | |
| seed_everything(seed) | |
| print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
| wm = "SDV2" | |
| wm_encoder = WatermarkEncoder() | |
| wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
| with torch.no_grad(),\ | |
| torch.autocast("cuda"): | |
| batch = make_batch_sd( | |
| image, txt=prompt, device=device, num_samples=num_samples) | |
| z = model.get_first_stage_encoding(model.encode_first_stage( | |
| batch[model.first_stage_key])) # move to latent space | |
| c = model.cond_stage_model.encode(batch["txt"]) | |
| c_cat = list() | |
| for ck in model.concat_keys: | |
| cc = batch[ck] | |
| cc = model.depth_model(cc) | |
| depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], | |
| keepdim=True) | |
| display_depth = (cc - depth_min) / (depth_max - depth_min) | |
| depth_image = Image.fromarray( | |
| (display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8)) | |
| cc = torch.nn.functional.interpolate( | |
| cc, | |
| size=z.shape[2:], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], | |
| keepdim=True) | |
| cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1. | |
| c_cat.append(cc) | |
| c_cat = torch.cat(c_cat, dim=1) | |
| # cond | |
| cond = {"c_concat": [c_cat], "c_crossattn": [c]} | |
| # uncond cond | |
| uc_cross = model.get_unconditional_conditioning(num_samples, "") | |
| uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} | |
| if not do_full_sample: | |
| # encode (scaled latent) | |
| z_enc = sampler.stochastic_encode( | |
| z, torch.tensor([t_enc] * num_samples).to(model.device)) | |
| else: | |
| z_enc = torch.randn_like(z) | |
| # decode it | |
| samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale, | |
| unconditional_conditioning=uc_full, callback=callback) | |
| x_samples_ddim = model.decode_first_stage(samples) | |
| result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
| result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 | |
| return [depth_image] + [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] | |
| def pad_image(input_image): | |
| pad_w, pad_h = np.max(((2, 2), np.ceil( | |
| np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size | |
| im_padded = Image.fromarray( | |
| np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) | |
| return im_padded | |
| def predict(input_image, prompt, steps, num_samples, scale, seed, eta, strength): | |
| init_image = input_image.convert("RGB") | |
| image = pad_image(init_image) # resize to integer multiple of 32 | |
| sampler.make_schedule(steps, ddim_eta=eta, verbose=True) | |
| assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]' | |
| do_full_sample = strength == 1. | |
| t_enc = min(int(strength * steps), steps-1) | |
| result = paint( | |
| sampler=sampler, | |
| image=image, | |
| prompt=prompt, | |
| t_enc=t_enc, | |
| seed=seed, | |
| scale=scale, | |
| num_samples=num_samples, | |
| callback=None, | |
| do_full_sample=do_full_sample | |
| ) | |
| return result | |
| sampler = initialize_model(sys.argv[1], sys.argv[2]) | |
| block = gr.Blocks().queue() | |
| with block: | |
| with gr.Row(): | |
| gr.Markdown("## Stable Diffusion Depth2Img") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(source='upload', type="pil") | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button(label="Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| num_samples = gr.Slider( | |
| label="Images", minimum=1, maximum=4, value=1, step=1) | |
| ddim_steps = gr.Slider(label="Steps", minimum=1, | |
| maximum=50, value=50, step=1) | |
| scale = gr.Slider( | |
| label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1 | |
| ) | |
| strength = gr.Slider( | |
| label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=2147483647, | |
| step=1, | |
| randomize=True, | |
| ) | |
| eta = gr.Number(label="eta (DDIM)", value=0.0) | |
| with gr.Column(): | |
| gallery = gr.Gallery(label="Generated images", show_label=False).style( | |
| grid=[2], height="auto") | |
| run_button.click(fn=predict, inputs=[ | |
| input_image, prompt, ddim_steps, num_samples, scale, seed, eta, strength], outputs=[gallery]) | |
| block.launch() | |