Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -90,6 +90,78 @@ def predict_pipeline(img_input,
|
|
| 90 |
pose_cfg_dict['all_joints_names'])])
|
| 91 |
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
|
| 95 |
|
|
|
|
| 90 |
pose_cfg_dict['all_joints_names'])])
|
| 91 |
|
| 92 |
|
| 93 |
+
##############################################################
|
| 94 |
+
# Run DLC and visualize results
|
| 95 |
+
dlc_proc = Processor()
|
| 96 |
+
|
| 97 |
+
# if required: ignore MD crops and run DLC on full image [mostly for testing]
|
| 98 |
+
if flag_dlc_only:
|
| 99 |
+
# compute kpts on input img
|
| 100 |
+
list_kpts_per_crop = predict_dlc([np.asarray(img_input)],
|
| 101 |
+
kpts_likelihood_th,
|
| 102 |
+
path_to_DLCmodel,
|
| 103 |
+
dlc_proc)
|
| 104 |
+
# draw kpts on input img #fix!
|
| 105 |
+
draw_keypoints_on_image(img_input,
|
| 106 |
+
list_kpts_per_crop[0], # a numpy array with shape [num_keypoints, 2].
|
| 107 |
+
map_label_id_to_str,
|
| 108 |
+
flag_show_str_labels,
|
| 109 |
+
use_normalized_coordinates=False,
|
| 110 |
+
font_style=font_style,
|
| 111 |
+
font_size=font_size,
|
| 112 |
+
keypt_color=keypt_color,
|
| 113 |
+
marker_size=marker_size)
|
| 114 |
+
|
| 115 |
+
donw_file = save_results_only_dlc(list_kpts_per_crop[0], map_label_id_to_str,dlc_model_input_str)
|
| 116 |
+
|
| 117 |
+
return img_input, donw_file
|
| 118 |
+
|
| 119 |
+
else:
|
| 120 |
+
# Compute kpts for each crop
|
| 121 |
+
list_kpts_per_crop = predict_dlc(list_crops,
|
| 122 |
+
kpts_likelihood_th,
|
| 123 |
+
path_to_DLCmodel,
|
| 124 |
+
dlc_proc)
|
| 125 |
+
|
| 126 |
+
# resize input image to match megadetector output
|
| 127 |
+
img_background = img_input.resize((md_results.ims[0].shape[1],
|
| 128 |
+
md_results.ims[0].shape[0]))
|
| 129 |
+
|
| 130 |
+
# draw keypoints on each crop and paste to background img
|
| 131 |
+
for ic, (np_crop, kpts_crop) in enumerate(zip(list_crops,
|
| 132 |
+
list_kpts_per_crop)):
|
| 133 |
+
|
| 134 |
+
img_crop = Image.fromarray(np_crop)
|
| 135 |
+
|
| 136 |
+
# Draw keypts on crop
|
| 137 |
+
draw_keypoints_on_image(img_crop,
|
| 138 |
+
kpts_crop, # a numpy array with shape [num_keypoints, 2].
|
| 139 |
+
map_label_id_to_str,
|
| 140 |
+
flag_show_str_labels,
|
| 141 |
+
use_normalized_coordinates=False, # if True, then I should use md_results.xyxyn for list_kpts_crop
|
| 142 |
+
font_style=font_style,
|
| 143 |
+
font_size=font_size,
|
| 144 |
+
keypt_color=keypt_color,
|
| 145 |
+
marker_size=marker_size)
|
| 146 |
+
|
| 147 |
+
# Paste crop in original image
|
| 148 |
+
img_background.paste(img_crop,
|
| 149 |
+
box = tuple([int(t) for t in md_results.xyxy[0][ic,:2]]))
|
| 150 |
+
|
| 151 |
+
# Plot bbox
|
| 152 |
+
bb_per_animal = md_results.xyxy[0].tolist()[ic]
|
| 153 |
+
pred = md_results.xyxy[0].tolist()[ic][4]
|
| 154 |
+
if bbox_likelihood_th < pred:
|
| 155 |
+
draw_bbox_w_text(img_background,
|
| 156 |
+
bb_per_animal,
|
| 157 |
+
font_style=font_style,
|
| 158 |
+
font_size=font_size) # TODO: add selectable color for bbox?
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Save detection results as json
|
| 162 |
+
download_file = save_results_as_json(md_results,list_kpts_per_crop,map_label_id_to_str, bbox_likelihood_th,dlc_model_input_str,mega_model_input)
|
| 163 |
+
|
| 164 |
+
return img_background, download_file
|
| 165 |
|
| 166 |
|
| 167 |
|