Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| from typing import List, Optional | |
| class CRF(nn.Module): | |
| """Conditional random field. | |
| This module implements a conditional random field [LMP01]_. The forward computation | |
| of this class computes the log likelihood of the given sequence of tags and | |
| emission score tensor. This class also has `~CRF.decode` method which finds | |
| the best tag sequence given an emission score tensor using `Viterbi algorithm`_. | |
| Args: | |
| num_tags: Number of tags. | |
| batch_first: Whether the first dimension corresponds to the size of a minibatch. | |
| Attributes: | |
| start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size | |
| ``(num_tags,)``. | |
| end_transitions (`~torch.nn.Parameter`): End transition score tensor of size | |
| ``(num_tags,)``. | |
| transitions (`~torch.nn.Parameter`): Transition score tensor of size | |
| ``(num_tags, num_tags)``. | |
| .. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001). | |
| "Conditional random fields: Probabilistic models for segmenting and | |
| labeling sequence data". *Proc. 18th International Conf. on Machine | |
| Learning*. Morgan Kaufmann. pp. 282–289. | |
| .. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm | |
| """ | |
| def __init__(self, num_tags: int, batch_first: bool = False) -> None: | |
| if num_tags <= 0: | |
| raise ValueError(f"invalid number of tags: {num_tags}") | |
| super().__init__() | |
| self.num_tags = num_tags | |
| self.batch_first = batch_first | |
| self.start_transitions = nn.Parameter(torch.empty(num_tags)) | |
| self.end_transitions = nn.Parameter(torch.empty(num_tags)) | |
| self.transitions = nn.Parameter(torch.empty(num_tags, num_tags)) | |
| self.reset_parameters() | |
| def reset_parameters(self) -> None: | |
| """Initialize the transition parameters. | |
| The parameters will be initialized randomly from a uniform distribution | |
| between -0.1 and 0.1. | |
| """ | |
| nn.init.uniform_(self.start_transitions, -0.1, 0.1) | |
| nn.init.uniform_(self.end_transitions, -0.1, 0.1) | |
| nn.init.uniform_(self.transitions, -0.1, 0.1) | |
| def __repr__(self) -> str: | |
| return f"{self.__class__.__name__}(num_tags={self.num_tags})" | |
| def forward(self, emissions: torch.Tensor, | |
| tags: torch.LongTensor, | |
| mask: Optional[torch.ByteTensor] = None, | |
| reduction: str = "mean") -> torch.Tensor: | |
| """Compute the conditional log likelihood of a sequence of tags given emission scores. | |
| Args: | |
| emissions (`~torch.Tensor`): Emission score tensor of size | |
| ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``, | |
| ``(batch_size, seq_length, num_tags)`` otherwise. | |
| tags (`~torch.LongTensor`): Sequence of tags tensor of size | |
| ``(seq_length, batch_size)`` if ``batch_first`` is ``False``, | |
| ``(batch_size, seq_length)`` otherwise. | |
| mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)`` | |
| if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise. | |
| reduction: Specifies the reduction to apply to the output: | |
| ``none|sum|mean|token_mean``. ``none``: no reduction will be applied. | |
| ``sum``: the output will be summed over batches. ``mean``: the output will be | |
| averaged over batches. ``token_mean``: the output will be averaged over tokens. | |
| Returns: | |
| `~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if | |
| reduction is ``none``, ``()`` otherwise. | |
| """ | |
| if reduction not in ("none", "sum", "mean", "token_mean"): | |
| raise ValueError(f"invalid reduction: {reduction}") | |
| if mask is None: | |
| mask = torch.ones_like(tags, dtype=torch.uint8, device=tags.device) | |
| if mask.dtype != torch.uint8: | |
| mask = mask.byte() | |
| self._validate(emissions, tags=tags, mask=mask) | |
| if self.batch_first: | |
| emissions = emissions.transpose(0, 1) | |
| tags = tags.transpose(0, 1) | |
| mask = mask.transpose(0, 1) | |
| # shape: (batch_size,) | |
| numerator = self._compute_score(emissions, tags, mask) | |
| # shape: (batch_size,) | |
| denominator = self._compute_normalizer(emissions, mask) | |
| # shape: (batch_size,) | |
| llh = numerator - denominator | |
| if reduction == "none": | |
| return llh | |
| if reduction == "sum": | |
| return llh.sum() | |
| if reduction == "mean": | |
| return llh.mean() | |
| return llh.sum() / mask.float().sum() | |
| def decode(self, emissions: torch.Tensor, | |
| mask: Optional[torch.ByteTensor] = None, | |
| nbest: Optional[int] = None, | |
| pad_tag: Optional[int] = None) -> List[List[List[int]]]: | |
| """Find the most likely tag sequence using Viterbi algorithm. | |
| Args: | |
| emissions (`~torch.Tensor`): Emission score tensor of size | |
| ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``, | |
| ``(batch_size, seq_length, num_tags)`` otherwise. | |
| mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)`` | |
| if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise. | |
| nbest (`int`): Number of most probable paths for each sequence | |
| pad_tag (`int`): Tag at padded positions. Often input varies in length and | |
| the length will be padded to the maximum length in the batch. Tags at | |
| the padded positions will be assigned with a padding tag, i.e. `pad_tag` | |
| Returns: | |
| A PyTorch tensor of the best tag sequence for each batch of shape | |
| (nbest, batch_size, seq_length) | |
| """ | |
| if nbest is None: | |
| nbest = 1 | |
| if mask is None: | |
| mask = torch.ones(emissions.shape[:2], dtype=torch.uint8, | |
| device=emissions.device) | |
| if mask.dtype != torch.uint8: | |
| mask = mask.byte() | |
| self._validate(emissions, mask=mask) | |
| if self.batch_first: | |
| emissions = emissions.transpose(0, 1) | |
| mask = mask.transpose(0, 1) | |
| if nbest == 1: | |
| return self._viterbi_decode(emissions, mask, pad_tag).unsqueeze(0) | |
| return self._viterbi_decode_nbest(emissions, mask, nbest, pad_tag) | |
| def _validate(self, emissions: torch.Tensor, | |
| tags: Optional[torch.LongTensor] = None, | |
| mask: Optional[torch.ByteTensor] = None) -> None: | |
| if emissions.dim() != 3: | |
| raise ValueError(f"emissions must have dimension of 3, got {emissions.dim()}") | |
| if emissions.size(2) != self.num_tags: | |
| raise ValueError( | |
| f"expected last dimension of emissions is {self.num_tags}, " | |
| f"got {emissions.size(2)}") | |
| if tags is not None: | |
| if emissions.shape[:2] != tags.shape: | |
| raise ValueError( | |
| "the first two dimensions of emissions and tags must match, " | |
| f"got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}") | |
| if mask is not None: | |
| if emissions.shape[:2] != mask.shape: | |
| raise ValueError( | |
| "the first two dimensions of emissions and mask must match, " | |
| f"got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}") | |
| no_empty_seq = not self.batch_first and mask[0].all() | |
| no_empty_seq_bf = self.batch_first and mask[:, 0].all() | |
| if not no_empty_seq and not no_empty_seq_bf: | |
| raise ValueError("mask of the first timestep must all be on") | |
| def _compute_score(self, emissions: torch.Tensor, | |
| tags: torch.LongTensor, | |
| mask: torch.ByteTensor) -> torch.Tensor: | |
| # emissions: (seq_length, batch_size, num_tags) | |
| # tags: (seq_length, batch_size) | |
| # mask: (seq_length, batch_size) | |
| seq_length, batch_size = tags.shape | |
| mask = mask.float() | |
| # Start transition score and first emission | |
| # shape: (batch_size,) | |
| score = self.start_transitions[tags[0]] | |
| score += emissions[0, torch.arange(batch_size), tags[0]] | |
| for i in range(1, seq_length): | |
| # Transition score to next tag, only added if next timestep is valid (mask == 1) | |
| # shape: (batch_size,) | |
| score += self.transitions[tags[i - 1], tags[i]] * mask[i] | |
| # Emission score for next tag, only added if next timestep is valid (mask == 1) | |
| # shape: (batch_size,) | |
| score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i] | |
| # End transition score | |
| # shape: (batch_size,) | |
| seq_ends = mask.long().sum(dim=0) - 1 | |
| # shape: (batch_size,) | |
| last_tags = tags[seq_ends, torch.arange(batch_size)] | |
| # shape: (batch_size,) | |
| score += self.end_transitions[last_tags] | |
| return score | |
| def _compute_normalizer(self, emissions: torch.Tensor, | |
| mask: torch.ByteTensor) -> torch.Tensor: | |
| # emissions: (seq_length, batch_size, num_tags) | |
| # mask: (seq_length, batch_size) | |
| seq_length = emissions.size(0) | |
| # Start transition score and first emission; score has size of | |
| # (batch_size, num_tags) where for each batch, the j-th column stores | |
| # the score that the first timestep has tag j | |
| # shape: (batch_size, num_tags) | |
| score = self.start_transitions + emissions[0] | |
| for i in range(1, seq_length): | |
| # Broadcast score for every possible next tag | |
| # shape: (batch_size, num_tags, 1) | |
| broadcast_score = score.unsqueeze(2) | |
| # Broadcast emission score for every possible current tag | |
| # shape: (batch_size, 1, num_tags) | |
| broadcast_emissions = emissions[i].unsqueeze(1) | |
| # Compute the score tensor of size (batch_size, num_tags, num_tags) where | |
| # for each sample, entry at row i and column j stores the sum of scores of all | |
| # possible tag sequences so far that end with transitioning from tag i to tag j | |
| # and emitting | |
| # shape: (batch_size, num_tags, num_tags) | |
| next_score = broadcast_score + self.transitions + broadcast_emissions | |
| # Sum over all possible current tags, but we"re in score space, so a sum | |
| # becomes a log-sum-exp: for each sample, entry i stores the sum of scores of | |
| # all possible tag sequences so far, that end in tag i | |
| # shape: (batch_size, num_tags) | |
| next_score = torch.logsumexp(next_score, dim=1) | |
| # Set score to the next score if this timestep is valid (mask == 1) | |
| # shape: (batch_size, num_tags) | |
| score = torch.where(mask[i].unsqueeze(1), next_score, score) | |
| # End transition score | |
| # shape: (batch_size, num_tags) | |
| score += self.end_transitions | |
| # Sum (log-sum-exp) over all possible tags | |
| # shape: (batch_size,) | |
| return torch.logsumexp(score, dim=1) | |
| def _viterbi_decode(self, emissions: torch.FloatTensor, | |
| mask: torch.ByteTensor, | |
| pad_tag: Optional[int] = None) -> List[List[int]]: | |
| # emissions: (seq_length, batch_size, num_tags) | |
| # mask: (seq_length, batch_size) | |
| # return: (batch_size, seq_length) | |
| if pad_tag is None: | |
| pad_tag = 0 | |
| device = emissions.device | |
| seq_length, batch_size = mask.shape | |
| # Start transition and first emission | |
| # shape: (batch_size, num_tags) | |
| score = self.start_transitions + emissions[0] | |
| history_idx = torch.zeros((seq_length, batch_size, self.num_tags), | |
| dtype=torch.long, device=device) | |
| oor_idx = torch.zeros((batch_size, self.num_tags), | |
| dtype=torch.long, device=device) | |
| oor_tag = torch.full((seq_length, batch_size), pad_tag, | |
| dtype=torch.long, device=device) | |
| # - score is a tensor of size (batch_size, num_tags) where for every batch, | |
| # value at column j stores the score of the best tag sequence so far that ends | |
| # with tag j | |
| # - history_idx saves where the best tags candidate transitioned from; this is used | |
| # when we trace back the best tag sequence | |
| # - oor_idx saves the best tags candidate transitioned from at the positions | |
| # where mask is 0, i.e. out of range (oor) | |
| # Viterbi algorithm recursive case: we compute the score of the best tag sequence | |
| # for every possible next tag | |
| for i in range(1, seq_length): | |
| # Broadcast viterbi score for every possible next tag | |
| # shape: (batch_size, num_tags, 1) | |
| broadcast_score = score.unsqueeze(2) | |
| # Broadcast emission score for every possible current tag | |
| # shape: (batch_size, 1, num_tags) | |
| broadcast_emission = emissions[i].unsqueeze(1) | |
| # Compute the score tensor of size (batch_size, num_tags, num_tags) where | |
| # for each sample, entry at row i and column j stores the score of the best | |
| # tag sequence so far that ends with transitioning from tag i to tag j and emitting | |
| # shape: (batch_size, num_tags, num_tags) | |
| next_score = broadcast_score + self.transitions + broadcast_emission | |
| # Find the maximum score over all possible current tag | |
| # shape: (batch_size, num_tags) | |
| next_score, indices = next_score.max(dim=1) | |
| # Set score to the next score if this timestep is valid (mask == 1) | |
| # and save the index that produces the next score | |
| # shape: (batch_size, num_tags) | |
| score = torch.where(mask[i].unsqueeze(-1), next_score, score) | |
| indices = torch.where(mask[i].unsqueeze(-1), indices, oor_idx) | |
| history_idx[i - 1] = indices | |
| # End transition score | |
| # shape: (batch_size, num_tags) | |
| end_score = score + self.end_transitions | |
| _, end_tag = end_score.max(dim=1) | |
| # shape: (batch_size,) | |
| seq_ends = mask.long().sum(dim=0) - 1 | |
| # insert the best tag at each sequence end (last position with mask == 1) | |
| history_idx = history_idx.transpose(1, 0).contiguous() | |
| history_idx.scatter_(1, seq_ends.view(-1, 1, 1).expand(-1, 1, self.num_tags), | |
| end_tag.view(-1, 1, 1).expand(-1, 1, self.num_tags)) | |
| history_idx = history_idx.transpose(1, 0).contiguous() | |
| # The most probable path for each sequence | |
| best_tags_arr = torch.zeros((seq_length, batch_size), | |
| dtype=torch.long, device=device) | |
| best_tags = torch.zeros(batch_size, 1, dtype=torch.long, device=device) | |
| for idx in range(seq_length - 1, -1, -1): | |
| best_tags = torch.gather(history_idx[idx], 1, best_tags) | |
| best_tags_arr[idx] = best_tags.data.view(batch_size) | |
| return torch.where(mask, best_tags_arr, oor_tag).transpose(0, 1) | |
| def _viterbi_decode_nbest(self, emissions: torch.FloatTensor, | |
| mask: torch.ByteTensor, | |
| nbest: int, | |
| pad_tag: Optional[int] = None) -> List[List[List[int]]]: | |
| # emissions: (seq_length, batch_size, num_tags) | |
| # mask: (seq_length, batch_size) | |
| # return: (nbest, batch_size, seq_length) | |
| if pad_tag is None: | |
| pad_tag = 0 | |
| device = emissions.device | |
| seq_length, batch_size = mask.shape | |
| # Start transition and first emission | |
| # shape: (batch_size, num_tags) | |
| score = self.start_transitions + emissions[0] | |
| history_idx = torch.zeros((seq_length, batch_size, self.num_tags, nbest), | |
| dtype=torch.long, device=device) | |
| oor_idx = torch.zeros((batch_size, self.num_tags, nbest), | |
| dtype=torch.long, device=device) | |
| oor_tag = torch.full((seq_length, batch_size, nbest), pad_tag, | |
| dtype=torch.long, device=device) | |
| # + score is a tensor of size (batch_size, num_tags) where for every batch, | |
| # value at column j stores the score of the best tag sequence so far that ends | |
| # with tag j | |
| # + history_idx saves where the best tags candidate transitioned from; this is used | |
| # when we trace back the best tag sequence | |
| # - oor_idx saves the best tags candidate transitioned from at the positions | |
| # where mask is 0, i.e. out of range (oor) | |
| # Viterbi algorithm recursive case: we compute the score of the best tag sequence | |
| # for every possible next tag | |
| for i in range(1, seq_length): | |
| if i == 1: | |
| broadcast_score = score.unsqueeze(-1) | |
| broadcast_emission = emissions[i].unsqueeze(1) | |
| # shape: (batch_size, num_tags, num_tags) | |
| next_score = broadcast_score + self.transitions + broadcast_emission | |
| else: | |
| broadcast_score = score.unsqueeze(-1) | |
| broadcast_emission = emissions[i].unsqueeze(1).unsqueeze(2) | |
| # shape: (batch_size, num_tags, nbest, num_tags) | |
| next_score = broadcast_score + self.transitions.unsqueeze(1) + broadcast_emission | |
| # Find the top `nbest` maximum score over all possible current tag | |
| # shape: (batch_size, nbest, num_tags) | |
| next_score, indices = next_score.view(batch_size, -1, self.num_tags).topk(nbest, dim=1) | |
| if i == 1: | |
| score = score.unsqueeze(-1).expand(-1, -1, nbest) | |
| indices = indices * nbest | |
| # convert to shape: (batch_size, num_tags, nbest) | |
| next_score = next_score.transpose(2, 1) | |
| indices = indices.transpose(2, 1) | |
| # Set score to the next score if this timestep is valid (mask == 1) | |
| # and save the index that produces the next score | |
| # shape: (batch_size, num_tags, nbest) | |
| score = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), next_score, score) | |
| indices = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), indices, oor_idx) | |
| history_idx[i - 1] = indices | |
| # End transition score shape: (batch_size, num_tags, nbest) | |
| end_score = score + self.end_transitions.unsqueeze(-1) | |
| _, end_tag = end_score.view(batch_size, -1).topk(nbest, dim=1) | |
| # shape: (batch_size,) | |
| seq_ends = mask.long().sum(dim=0) - 1 | |
| # insert the best tag at each sequence end (last position with mask == 1) | |
| history_idx = history_idx.transpose(1, 0).contiguous() | |
| history_idx.scatter_(1, seq_ends.view(-1, 1, 1, 1).expand(-1, 1, self.num_tags, nbest), | |
| end_tag.view(-1, 1, 1, nbest).expand(-1, 1, self.num_tags, nbest)) | |
| history_idx = history_idx.transpose(1, 0).contiguous() | |
| # The most probable path for each sequence | |
| best_tags_arr = torch.zeros((seq_length, batch_size, nbest), | |
| dtype=torch.long, device=device) | |
| best_tags = torch.arange(nbest, dtype=torch.long, device=device) \ | |
| .view(1, -1).expand(batch_size, -1) | |
| for idx in range(seq_length - 1, -1, -1): | |
| best_tags = torch.gather(history_idx[idx].view(batch_size, -1), 1, best_tags) | |
| best_tags_arr[idx] = best_tags.data.view(batch_size, -1) // nbest | |
| return torch.where(mask.unsqueeze(-1), best_tags_arr, oor_tag).permute(2, 1, 0) | |